## WORKSHOPMANUAL | MANUEL D'ATELIER | MANUAL DE TALLER



SHERCO

## ÍNDICE

| PRÓLOGO                                                             | 3  |
|---------------------------------------------------------------------|----|
| LISTADEHERRAMIENTASPARAMOTOR450/500SEF                              |    |
| CARACTERISTICAS TECNICAS                                            |    |
| )IMotor                                                             | 5  |
| )I Parteciclo                                                       |    |
| AJUSTES DEFABRICA                                                   | 7  |
| )I Horquilla                                                        |    |
| ) Amortiguador                                                      |    |
| DESMONTAJEMONTAJE DELMOTOR                                          |    |
| NDesmontaje del motor                                               |    |
| )IColocacióndelmotorenelbastidor                                    | 12 |
| )IPreparación                                                       | 13 |
| )IRemovingthecylinderheadcover                                      |    |
| )IDesmontarlosárbolesdelevas                                        | 14 |
| ) Desmontar el tensor de distribución                               |    |
| ) Desmontaje de la cadena de distribución                           |    |
| ) Desmontaje de la culata                                           | 15 |
| ) Desmontaje delcilindro                                            | 15 |
| )IDesmontaje del pistón                                             |    |
| ) Desmontaje del cárter deencendido                                 |    |
| ) IDesmontaje del rotor                                             |    |
| ) Desmontaje del arrancador eléctrico                               |    |
| )Desmontaje del embrague                                            |    |
| Il Desmontaje del cárter deembrague                                 |    |
| IDesmontajedelajuntareténdela bombadeaguaydelrodamiento .           |    |
| )I Desmontaje de la campana                                         |    |
| ) Desmontaje del piñón de rueda libre                               |    |
| )I Desmontaje de la bomba de aceite                                 |    |
| )ICambiodelabombadeaceite                                           |    |
| ) Desmontaje de la estrellaselectora                                |    |
| ) Separación de los cárteres centrales                              |    |
| ) Desmontaje de la caja de velocidades                              |    |
| )I Desmontaje delcigüeñal                                           |    |
| )IControldeloscárterescentrales                                     |    |
| )ICárter central izquierdo                                          |    |
| ) Cárter central derecho                                            |    |
| ) Control de rodamiento de rueda libre                              |    |
| )/Cambiodelosrodamientosde cigüeñal                                 |    |
| ) Control del cigüeñal                                              |    |
| ) Control de la caja de velocidades                                 |    |
| ) Control del embrague                                              |    |
| I Control de la parte superior del motor                            |    |
| )IControl de la distribución                                        |    |
| )/Control de la distribución.                                       |    |
| Montaje de los cárteres centrales     Montaje del cárter deembrague |    |
| · · · · · · · · · · · · · · · · · · ·                               |    |
| )IMontajedelcárterdelabombade agua                                  |    |
| ) Montaje del embrague                                              |    |
| ) Montaje del arrancador eléctrico                                  |    |
| ) Inserción de los segmentos en el pistón                           |    |
| ) Montaje del pistón                                                |    |
| ) Montaje del cilindro                                              |    |
| ) Montaje de la culata<br>) Montaje de la cadena de distribución    |    |
| ) Montaje de la cadena de distribución                              |    |
| ) Montajedellotoi                                                   |    |
| )i Control del juego deválvulas                                     |    |
| N Finalización del montaje delmotor                                 |    |

| ) Montaje del cárter deencendido               | 37 |
|------------------------------------------------|----|
| TABLADEPARESDEAPRIETE                          | 38 |
| LIMPIEZADELCUERPODEINYECCIÓN                   | 41 |
| ) Limpieza del cuerpo deinyección              |    |
| ) Montaje del cuerpo de inyección              | 42 |
| CAMBIO DEL SENSORTPS                           | 43 |
| PARTE ELECTRICA                                | 44 |
| ) Componentes eléctricos                       |    |
| ) 1- Control del ventilador                    | 45 |
| )  2-CDI                                       | 45 |
| ) 3-Bomba de gasolina                          | 45 |
| ) 4- Control del regulador de voltaje          |    |
| ) 5- Control de batería                        |    |
| ) 6- Control del sensor MAP                    |    |
| ) 7- Control del sensor TPS                    |    |
| ) 8- Control del motor de paso a paso          |    |
| ) 9- Control del inyector                      |    |
| ) 10- Control del motor de arranque            |    |
| ) 11- Control del alternador                   |    |
| ) 12- Control del sensor Hall (cigüeñal)       |    |
| ) 13- Control del sensor de temperatura        |    |
| ) 14- Control de bobina de encendido           | 50 |
| INSTALACION ELECTRICA                          | 51 |
| Instalación de luces homologada (8145)         | 51 |
| Instalación de luces racing (6845)             | 52 |
| Instalación eléctrica principal (6781)         | 53 |
| Instalación eléctrica ventilador (3577)        | 54 |
| )I1-PresentacióndelsistemadeinyecciónSYNERJECT |    |
| ) 2- Presentación del programa                 |    |
| 2.1- Conexión con el sistema Keyless           |    |
| 2.3- Menú de actualización y sincronización    |    |
| ) 13-Uso del programa                          | 66 |



This manual is designed primarily for skilled mechanics working in a properly equipped workshop. The execution of the operations in this manual requires a strong mechanical knowledge and specific SHERCO tools designed for the 450 SEF and 500 SEF engine.

This workshop manual is a supplement to the SHERCO 450 SEF and 500 SEF owner's manual.

## LISTA DE HERRAMIENTAS PARA MOTOR 450/500 SEF

#### ) | 450/500 SEF

| Referencia de herramientas | Designación                                           |
|----------------------------|-------------------------------------------------------|
| 10338                      | Tornillo de calado punto muerto superior              |
| 5749                       | Conjunto de embrague ADLER                            |
| 4753                       | Conjunto de encendido con abrazadera                  |
| 1822                       | Herramienta de rodamiento del eje de la               |
| 1968                       | Herramienta junta retén de bomba de                   |
| R455                       | Soporte de motor                                      |
| 5593                       | Herramienta de conjunto de piñón primario             |
| 5774                       | Soporte de pistón                                     |
| R462                       | Extractor para volante                                |
| 10049                      | Extractor de anillo de cigüeñal                       |
| R450                       | Herramienta de retén selector                         |
| R472                       | Aplicador para retén selector                         |
| 5773                       | Llave de bujía especial 450                           |
| 5028                       | MANGO WP Ø48                                          |
| 8561                       | Herramienta de diagnóstico de inyección Synerject     |
| 7666                       | LLAVE DE LA TAPA SUPERIOR 49 MM AZUL                  |
| 7669                       | SELLO MARTILLO 48 MM                                  |
| 7671                       | ALIMENTADOR 500 ML                                    |
| 7670                       | PINZA INTERNA DEL TUBO 48 MM                          |
| R453                       | Herramienta de montaje de rodamiento del eje selector |
| R444                       | Herramienta de retén selector                         |
| 6267                       | Derivación para el sistema Keyless                    |

## CARACTERISTICAS TECNICAS

#### ) | Motor

|                                      | T                                                         |                                  |  |
|--------------------------------------|-----------------------------------------------------------|----------------------------------|--|
| Tipo                                 | monocilíndrico de 4 tiempos con refrigeración por líquido |                                  |  |
| Cilindrada                           | 449.4cc 478.22cc                                          |                                  |  |
| Calibre/Carrera                      | 95X63.9mm                                                 | 98X63.4mm                        |  |
| Índice de compresión                 | 12.30 : 1                                                 | 11.60 : 1                        |  |
| Gasolina                             | sin plomo con un índice o                                 | le octano de al menos 95         |  |
| Distribución                         | 4 válvulas, doble árbol de levas er                       | la parte superior, accionamiento |  |
|                                      | median                                                    | te cadena                        |  |
| Diámetro válvula de admisión         | 381                                                       | nm                               |  |
| Diámetro válvula de escape           | 30                                                        | ).5                              |  |
| Juego en frío de válvula de admisión | 0.15-0                                                    | .2 mm                            |  |
| Juego en frío de válvula de escape   | 0.2-0.2                                                   | 25 mm                            |  |
| Rodamientos de cigüeñal              | 2 rodamientos de rodillos                                 |                                  |  |
| Pistón                               | aluminio forjado                                          |                                  |  |
| Lubricación                          | lubricación bajo presión con 2 bombas trocoidales         |                                  |  |
| Aceite de motor                      | 1 litro SAE 5w60 (Motul® 300V 4T OffRoad)                 |                                  |  |
| Transmisión primaria                 | 25 : 68                                                   |                                  |  |
| Caja de cambios:                     | 6 veloc                                                   | idades                           |  |
| 1 <sup>st</sup>                      | 13                                                        | :32                              |  |
| 2 <sup>nd</sup>                      | 16                                                        | :29                              |  |
| 3 <sup>rd</sup>                      | 19                                                        | :27                              |  |
| 4 <sup>th</sup>                      | 21                                                        | : 24                             |  |
| 5 <sup>th</sup>                      | 23                                                        | :22                              |  |
| 6 <sup>th</sup>                      | 25                                                        | :21                              |  |
| Transmisión final                    | 14 2                                                      | <b>&lt;</b> 50                   |  |
| Embrague                             | multidisco en baño de aceite, comando hidráulico          |                                  |  |
| Arranque/batería                     | Eléctrica 12V 4Ah/ BATTERY LITHIUM BSLI-02 12.8V<br>2Ah   |                                  |  |
| Inyección electrónica                | Synerject                                                 |                                  |  |
| 1                                    |                                                           |                                  |  |

## CARACTERISTICAS TECNICAS

## ) | Parteciclo

| Chasis                                          | Chasis de simple cuna desdoblado en acero CrMo con chasis secundario en aluminio |
|-------------------------------------------------|----------------------------------------------------------------------------------|
| Horquilla                                       | KAYABA cartouchos cerrados Ø48mm (factory)                                       |
| Suspensión trasera                              | KAYABA suspensión con botella separada                                           |
| Carrera delantera/trasera                       | 330/330mm                                                                        |
| Freno delantero                                 | Disco Ø 260mm                                                                    |
| Freno trasero                                   | Disco Ø 220mm                                                                    |
| Frenos de disco                                 | Límite de desgaste: 2,7 mm delantero y 3,6 mm trasero                            |
| Neumático delantero                             | 90/90-21''                                                                       |
| Neumático trasero                               | 140/80-18''                                                                      |
| Presión aire todo terreno delantera/<br>trasera | 0.9 bar                                                                          |
| Capacidad del depósito de gasolina              | 9.7l con 1 litro de reserva                                                      |
| Ángulo de la columna de dirección               | 27.3°                                                                            |
| Distancia entre ejes                            | 1490mm                                                                           |

## AJUSTES DE FABRICA

## ) | Horquilla

#### Regulación estándar - Horquilla FACTORY KAYABA USD Ø 48 mm

| Compresión          | Confort                    | 20 clics hacia atrás |
|---------------------|----------------------------|----------------------|
|                     | Standard                   | 12 clics hacia atrás |
|                     | Sport                      | 8 clics hacia atrás  |
| Descompresión       | Sport                      | 18 clics hacia atrás |
|                     | Standard                   | 15 clics hacia atrás |
|                     | Sport                      | 12 clics hacia atrás |
| Rigidez muelle      | Peso del piloto : 65-75 kg | 4.2N/m               |
|                     | Peso del piloto : 75-85 kg | 4.4N/m               |
|                     | Peso del piloto : 85-95 kg | 4.6N/m               |
| Tipo de aceite      |                            | 01M                  |
| Quantidad de aceite |                            | 345cc                |

#### Regulación estándar - Horquilla RACING KAYABA USD Ø 48 mm

| Compresión                      | Comfort                   | 18 clicks hacia atrás |
|---------------------------------|---------------------------|-----------------------|
|                                 | Standard                  | 14 clicks hacia atrás |
|                                 | Sport                     | 12 clicks hacia atrás |
| Descompresión Comfort 15 clicks |                           | 15 clicks hacia atrás |
|                                 | Standard                  | 12 clicks hacia atrás |
|                                 | Sport                     | 10 clicks hacia atrás |
| Rigidez muelle                  | Peso del piloto: 65-75 kg | 4.2N/mm               |
|                                 | Peso del piloto: 75-85 kg | 4.2N/m                |
|                                 | Peso del piloto: 85-95    | 4.6N/m                |
| Tipo de aceite                  | 01M                       | 670 CC                |

## AJUSTES DE FABRICA

## ) | Amortiguador

Ajustes de fábrica – Amortiguador KAYABA Suspensión

| Compresión en baja velocidad | Confort                    | 20 clics hacia atrás    |  |
|------------------------------|----------------------------|-------------------------|--|
|                              | Estándar                   | 14 clics hacia atrás    |  |
|                              | Deporte                    | 12 clics hacia atrás    |  |
| Compresión a alta velocidad  | Confort                    | 2.5 vueltas hacia atrás |  |
|                              | Estándar                   | 1.5 vueltas hacia atrás |  |
|                              | Deporte                    | 1 vuelta hacia atrás    |  |
| Descompresión                | Confort                    | 15 clics hacia atrás    |  |
|                              | Estándar                   | 13 clics hacia atrás    |  |
|                              | Deporte                    | 11 clics hacia atrás    |  |
| Rigidez muelle               | Peso del piloto : 65-75 kg | 48N/mm                  |  |
|                              | Peso del piloto : 75-85 kg | 50N/mm (origen)         |  |
|                              | Peso del piloto : 85-95 kg | 57N/mm                  |  |

## OPERACIONES QUE REQUIEREN DESMONTAR O NO EL MOTOR

|                                  | Operación que requiere | Operación que no requiere |
|----------------------------------|------------------------|---------------------------|
|                                  | desmontar el motor     | desmontar el motor        |
| Cigüeñal (kit de biela incluido) | •                      |                           |
| Caja de cambios completa         | •                      |                           |
| Rodamiento de cigüeñal           | •                      |                           |
| Rodamiento de caja de cambios    | •                      |                           |
| Pistón                           | •                      |                           |
| Cilindro                         | •                      |                           |
| Culata                           | •                      |                           |
| Distribución                     |                        | •                         |
| Encendido                        |                        | •                         |
| Piñones de arranque              |                        | •                         |
| Rueda libre                      |                        | •                         |
| Embrague completo                |                        | •                         |
| Bomba de agua                    |                        | •                         |
| Bomba de aceite                  |                        | •                         |
| Conjunto de selección de cambios |                        | •                         |

## DESMONTAJE/MONTAJE DEL MOTOR

#### ) | Desmontaje del motor

#### CUIDADO

Para desmontar el motor, se debe retirar el eje de pivote del basculante, lo que permite separar el conjunto rueda trasera/basculante. Para que la moto no se tumbe, se debe sostener la conficiencia con un gato.

- Vaciar (véase el Manual de instrucciones)
  - El aceite del motor.
  - El líquido de refrigeración.
- ☐ Colocar la moto sobre un taburete.
- Desmontar el asiento.
- Desconectar la batería (véase el Manual de instrucciones).
- Desmontar el depósito con sus placas de radiador (véase el Manual de instrucciones).
- Desconectar el haz eléctrico vinculado al motor (terminal de arranque, sensor TPS, sensor de temperatura de agua, bobina lápiz e inyector).
- Desmontar los muelles del caño de escape para poder retirarlo.
- Desmontar la bobina lápiz.
- Desmontar el cuerpo de inyección.
- ☐ Desmontar el protector de cadena.
- Desmontar la cadena de transmisión secundaria (unión rápida).
- ☐ Desmontar el receptor de embrague.

#### CUIDADO

Una vez retirado el receptor de embrague, ya no se sostiene el pistón. Mantenga el pistón presionado con la ayuda de una abrazadera de plástico.

| Desmontar | ios manguitos | de aqua conectados ai motor |  |
|-----------|---------------|-----------------------------|--|
|           |               |                             |  |

- ☐ Retirar el radiador izquierdo.
- Desmontar las patas de fijación de la culata-bastidor.
- ☐ Desmontar las protecciones del bastidor a la derecha y a la izquierda de la moto.
- ☐ Desatornillar el eje del basculante.
- ☐ Desatornillar los otros dos ejes de motor.
- Desmontar el eje del basculante y desplazar el basculante levemente hacia atrás.

- ☐ Desmontar los ejes de motores.
- Retirar el motor hacia la izquierda haciéndolo girar.

#### NOTA:

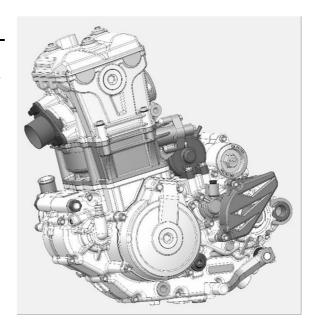
Usted deberá contar con ayuda para esta etapa, ya que el peso es importante. Asegúrese de no dañar las patas de fijación del motor en el bastidor.

## DESMONTAJE/MONTAJE DEL MOTOR

#### ) | Colocación del motor en el bastidor

| Coloc | ar el | motor | en e | lbastidor. |
|-------|-------|-------|------|------------|
|       |       |       |      |            |

- ☐ Colocar el eje del basculante.
- ☐ Colocar los ejes de motores.
- ☐ Ajustar los ejes de motores en 40Nm.
- ☐ Ajustar el eje del basculante en 100Nm.
- ☐ Colocar las protecciones del bastidor y ajustarlas con las abrazaderas.
- □ Colocar los soportes de culata derecha e izquierda. **Colocar el fijador de roscas rojo y ajustar en 25Nm**.
- □ Colocar el radiador izquierdo y ajustar en 10Nm.
- Colocar los manguitos del circuito de refrigeración.
- Cerciórese de que el motor esté limpio y reemplace el receptor de embrague. Ajustar en 10 Nm.
- Colocar la cadena secundaria y ajustar la tensión (ver procedimiento en el manual de instrucciones).
- ☐ Colocar el protector de cadena.
- Colocar el cuerpo de inyección.
- Colocar la bobina lápiz.
- Colocar el caño de escape y fijarlo al cilindro con sus dos muelles.
- Conectar el haz eléctrico vinculado al motor (terminal de arranque, sensor TPS, sensor de temperatura de agua, bobina lápiz e inyector).
- Volver a montar el depósito de gasolina con sus placas de radiador (véase el manual de instrucciones).
- Volver a conectar la batería (vease el manual de instrucciones).


#### CUIDADO

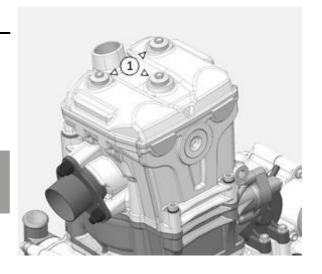
Antes de conectar, verifique que la llave de contacto (450 SEF estándar) o el contacto (450/500 SEF) se encuentre en OFF.

- □ Colocar el asiento.
- Medir el nivel de líquido refrigerante y el aceite de motor (vease el manual de instrucciones).

#### ) | Preparación

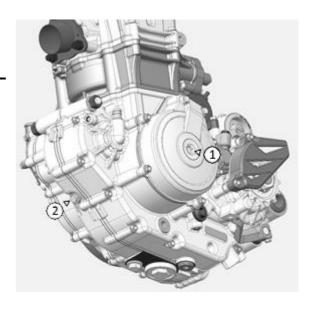
- ☐ Colocar el motor sobre el soporte de motor R455.
- □ Vaciar el aceite de motor (ver Manual de instrucciones).
- Cerciórese de que el espacio de trabajo esté ordenado antes de comenzar con el desmontaje del motor.
- Desmontar el piñón de salida de caja.




#### 1 | Removing the cylinder head cover

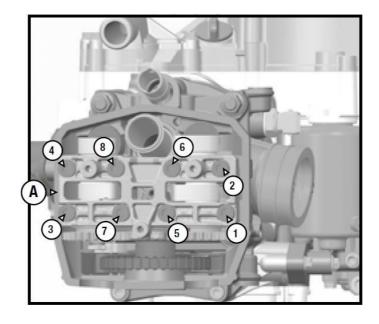
- Desmontar la bujía con una herramienta especial para bujía 5773.
- □ Desenroscar los 3 tornillos (1) y desmontar el cubreculata.

#### CUIDADO


Los tornillos cuentan con una junta tórica.

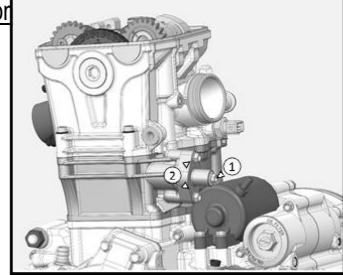
☐ Desmontar la junta del cubre-culata.




## ) | Posicionar el motor en punto muerto superior

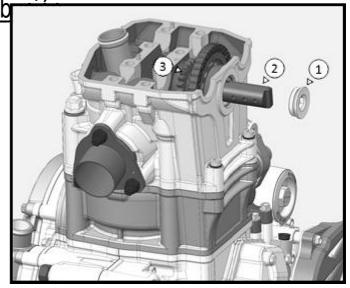
- Desmontar el tapón del cárter de encendido (1).
- Desmontar el tapón de control de calado (2).
- Girar el motor en sentido inverso al de las agujas del reloj a los efectos de alinear el centro del orificio del cigüeñal el del orificio de control de calado, colocar la herramienta de calado de punto muerto superior en (2) (ref. 10338).




#### ) | Desmontar los árboles de levas

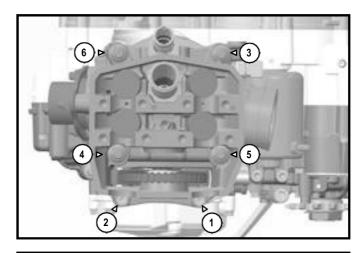
- Desenroscar los ocho tornillos de la placa de cojinete del árbol de levas indicado en la foto.
- ☐ Retirar la placa de cojinete (A).
- Retirar los árboles de levas.




#### Desmontar el tensor de distribución

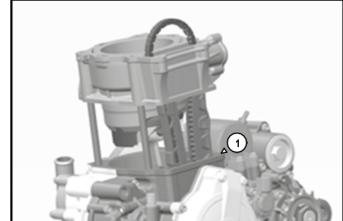
- ☐ Desenroscar el tornillo (1) y retirar el muelle.
- □ Desenroscar los dos tornillos (2).
- ☐ Retirar el tensor asi como la junta.




#### Desmontaje de la cadena de distrib

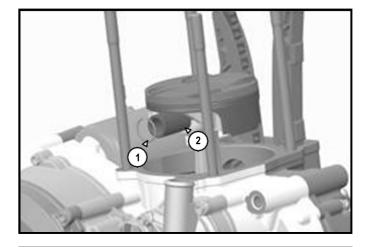
- ☐ Retirar la tapa (1) y el eje (2).
- □ Mantener el piñón (3) y liberar la cadena.
- □ Desmontar el pinon (3).
- □ Retirar la herramienta de calado de punto muerto superior 10338.




#### ) | Desmontaje de la culata

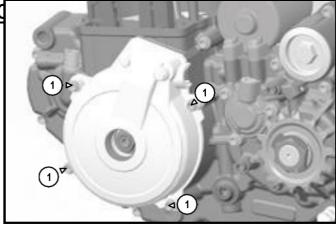
- ☐ Desenroscar los tornillos de la culata según lo indicado en lafoto.
- ☐ Desmontar la culata y tirar verticalmente.
- ☐ Desmontar la junta de culata con cuidado.




#### <u>) | Desmontaje delcilindro</u>

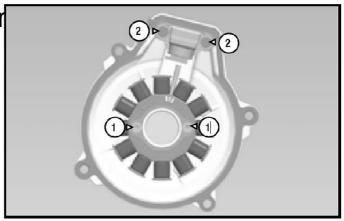
- □ Desmontar el cilindro y tirar verticalmente.
- ☐ Desmontar la junta de apoyo (1) con cuidado.




#### ) | Desmontaje del pistón

- ☐ Desmontar el anillo de retención (1) del eje de pistón y luego retirar el eje del pistón (2).
- □ Desmontar el piston.




#### Desmontaje del cárter de encendido

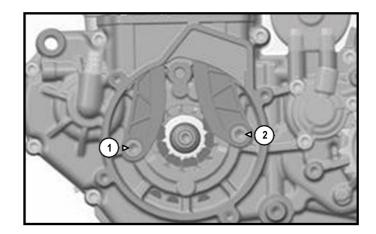
- ☐ Desmontar los 4 tornillos (1) y retirar el carter de encendido.
- ☐ Desmontar la junta de carter de encendido con cuidado.



## Reemplazo del estator y del sensor del régimen

- ☐ Desmontar los 2 tornillos del sensor (2) y los dos tornillos del estator (1).
- ☐ Colocar las nuevas piezas.
- □ Volver a colocar los tornillos con el fijador de roscas rojo y ajustar en 7Nm.

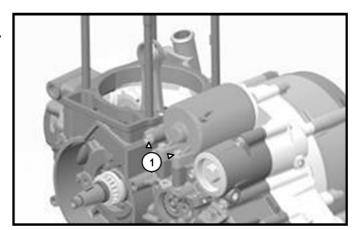



#### ) | Desmontaje del rotor

- ☐ Utilizar la herramienta de mantenimiento de rotor 4753.
- ☐ Desbloquear la tuerca central.
- ☐ Extraer el volante con la ayuda de un extractor de volantes R462.



# Desmontaje de la cadenade <u>distribución</u>


- $\Box$  Desajustar los patines de la cadena de distribución (1) y (2).
- □ Desmontar la cadena de distribucion.

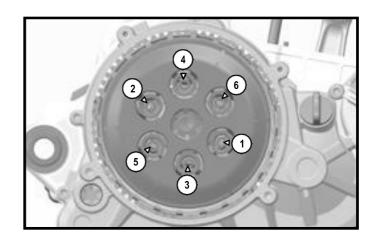


## Desmontaje del arrancador eléctrico

☐ Desatornillar los 2 tornillos (1) y tirar horizontalmente hacia la izquierda.

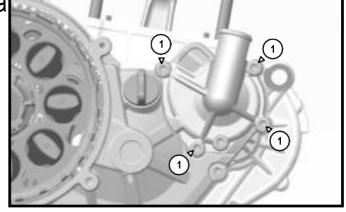
Retirar el filtro de aceite si no fue hecho previamente.




#### Desmontaje del embrague

- □ Desmontar la tapa de carter de embrague desatornillando los 4 tornillos. Prestar atención a la junta torica situada en el contorno de la tapa.
- ☐ Colocar la herramienta de PMH 10338.

#### CUIDADO


No utilizar esta herramienta para un ajuste o desajuste superior a 10 Nm.

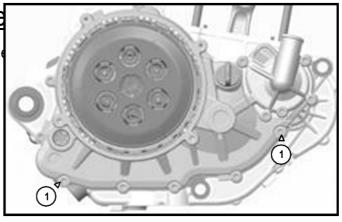
- ☐ Desmontar los 6 tornillos del plato opresor.
- ☐ Sacar los discos conductores y los discos lisos.
- Asegúrese la libre rotación de la nuez de embrague.



## Desmontaje del cárter de la bomba de agua

- Desmontar los tornillos (1) del cárter de la bomba de agua.
- Poner atención a la junta tórica que se encuentra en el contorno.




#### ) | Desmontaje del cárter de embrague

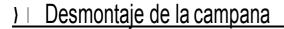
Desmontar los 8 tornillos del cárter de embrague

#### CUIDADO

Prestar atención a los tornillos, 6 tienen un largo de 25 mm, 2 de 30 mm (tornillo (1)).

• Desmontar el cárter de embrague y retirar con cuidado la junta.

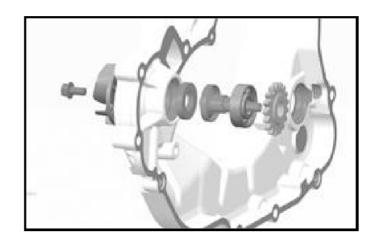


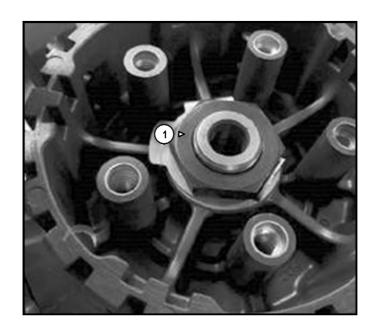

# Desmontaje de la junta retén de la bomba de agua y del rodamiento

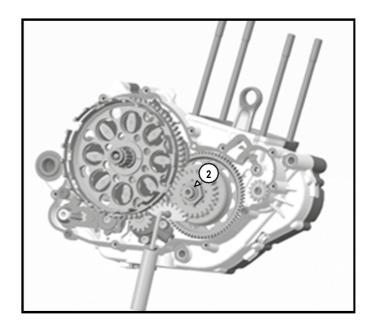
- Desmontar la turbina de la bomba de agua con un casquillo de 10 desajustándola y manteniendo el piñón de accionamiento.
- Desmontar el eje de la bomba de agua. Se tendrá así acceso a las dos juntas retén.

#### CUIDADO

las 2 juntas no son idénticas ni intercambiables


- Separar el eje y el piñón de accionamiento de bomba de agua.
- □ Sacar el rodamiento de bomba de agua.





- □ Retirar la varilla de empuje de nuez de embrague.
- Aplastar la lengüeta de seguridad.
- □ Bloquear la nuez utilizando la herramienta 5749 y aflojar la tuerca de nuez (1).
- $\hfill \square$  Desmontar la nuez, la arandela dentada y la campana.
- Retirar el piñón de accionamiento de la bomba de aceite si no quedó adherido a la campana.
- ☐ Controlar las jaulas de agujas, proceder a cambiarlas si fuera necesario.
- ☐ Controlar visualmente la campana de embrague.

#### **CUIDADO**

Si usted desea a continuación desmontar la rueda libre o el balancín de equilibrio, proceda a bloquear la transmisión primaria con la ayuda de la herramienta 5593. Desbloquear la tuerca de la masa del balancín de equilibrio (2).







#### ) | Desmontaje del piñón de rueda libr

#### CUIDADO

Ver párrafo precedente para desbloqueo de la tuerca de balancín.

- Desmontar los anillos de retención (1) y las arandelas.
- ☐ Desmontar el limitador de par(2).
- Desmontar el piñón intermedio de bomba de aceite (3).
- ☐ Aflojar la tuerca y retirar la campana de rueda libre (4) con un extractor de 2 patas.



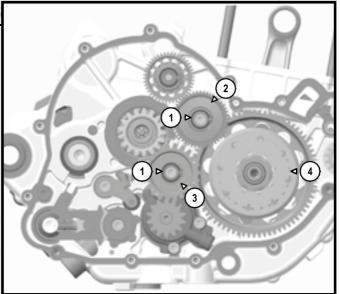
No dañar el extremo del cigüeñal : paso de aceite, engrase del manetón y junta de labio.

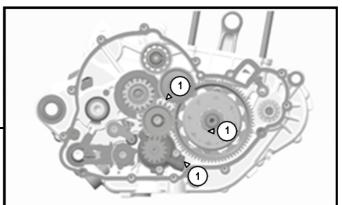
Retirar el piñón de ruedalibre.

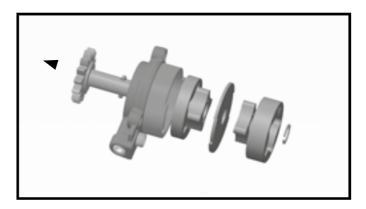
#### Desmontaje de la bomba de aceite

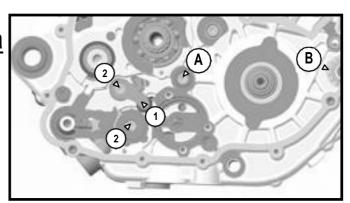
- Desmontar el piñón intermedio de bomba de aceite.
- ☐ Extraer los 3 tornillos(1).

#### ) | Cambio de la bomba de aceite


• Desmontar el anillo de retención en el extremo del eje y retirarlo.

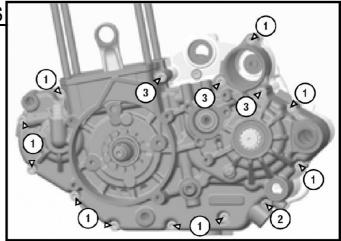

#### CUIDADO


La bomba a la izquierda de la pared tiene un espesor de 8 mm y a la derecha un espesor de 12 mm.


#### Desmontaje de la estrella selectora

- ☐ Mantener bloqueado el gancho de cierre de seleccion (1).
- ☐ Tirar sobre el escorpion y desmontar el eje selector.
- ☐ Desbloquear la estrella selectora y el gancho de cierre con una llave allen (2).





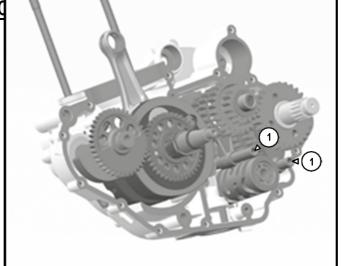





#### ) | Separación de los cárteres centrales

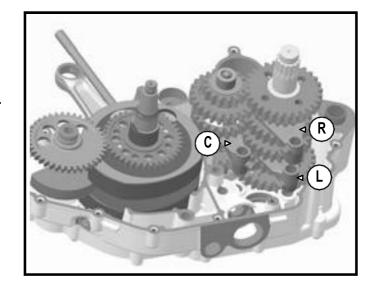
- ☐ Desmontar el tornillo (A p. 19) con una llave allen.
- □ Desmontar el piñón de accionamiento de bomba de agua (B p.19) retirando el anillo de retención. Cuidado con la aguja que puede caerse.
- □ Volver el carter y desmontar los 14 tornillos del carter central: (1) largo 45 mm x 10; (2) largo 55 mm x 1; (3) largo 75 x 3.
- ☐ Separar los carteres centrales.




#### ) | Desmontaje de la caja de velocidad

- ☐ Desmontar de los dos ejes de horquilla (1).
- ☐ Desmontar el tambor selector.

#### CUIDADO


con los pequeños casquillos y horquillas.

- Desmontar las horquillas C, L y R.
- Desmontar los dos árboles de caja de velocidades.



#### ) | Desmontaje del cigüeñal

- Desmontar el balancín de equilibrio.
- Desmontar el cigüeñal.

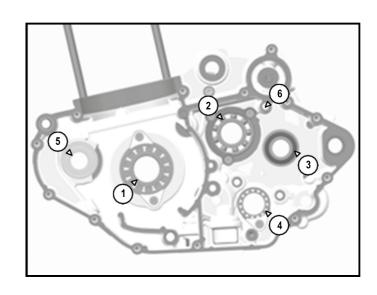


#### ) | Control de los cárteres centrales

- Inspeccionar el estado general de los cárteres centrales, deterioros, fisuras.
- Cambiar el juego de cárter defectuoso o desgastado si fueranecesario.
- ☐ Inspeccionar elestado de los rodamientos.
- Cámbielos si es necesario.

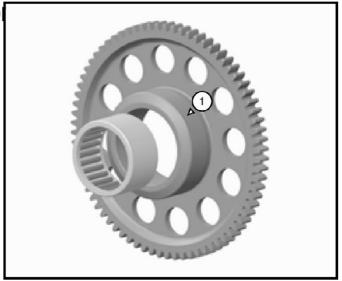
#### ) | Cárter central izquierdo

- Los rodamientos de cigüeñal (1), árbol primario (2) y secundario (3) de caja de velocidades se ajustan con tornillos y/o placas.
- Rodamiento de balancín de equilibrio (4).
- ☐ Controlar los rodamientos, cambiarlos si es necesario.
- □ Extraer los rodamientos.
- Verificar que los compartimientos estén en buenas condiciones y volver a colocar los rodamientos nuevos, cárter calentado a 70 °C aproximadamente.
- Aplicar el fijador de roscas azul en los tornillos de sujeción de los rodamientos y atornillar en 5 Nm.


# 6<sub>4</sub> 7 7 7 4

#### CUIDADO

Los surtidores de pistón (7) están clasificados y no pueden reemplazarse. Si estuvieran dañados, cambiar los cárteres.


#### ) | Cárter central derecho

- Los rodamientos de cigüeñal (1), árbol primario (2) y secundario (3) y el tambor selector (4) se ajustan con tornillos y/o placas.
- Rodamiento de balancín de equilibrio (5).
- ☐ Controlar los rodamientos, cambiarlos si es necesario.
- Extraer los rodamientos.
- Verificar que los compartimientos se encuentren en buenas condiciones y volver a colocar los rodamientos nuevos, cárter calentado a 70 °C aproximadamente.
- Aplicar el fijador de roscas azul en los tornillos de sujeción de los rodamientos y atornillar en 5 Nm.
- ☐ Controlar que el surtidor de aceite (6) y (7) (lado exterior) no se encuentre tapado.



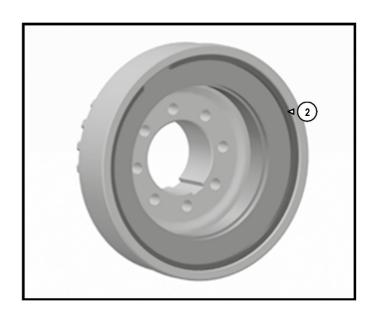
#### ) | Control de rodamiento de rueda libi

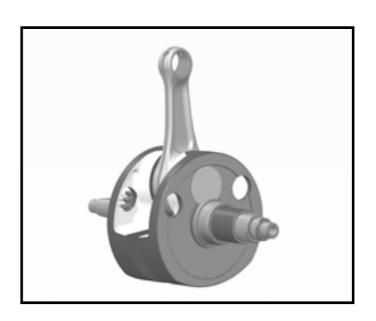
- Controlar visualmente la jaula de agujas del piñón de rueda libre.
- Cámbiela si es necesario.
- Controlar el aspecto del trayecto de rodamiento del 1 piñón de rueda libre (1).
- Cambiar el piñón si es necesario.
- Controlar el aspecto de la rueda libre, el juego en la mano, y su correcta rotación.
- Cámbiela si es necesario: retirar el anillo de retención (2) exterior y desmontar la rueda libre.



#### CUIDADO

El reemplazo de la rueda libre implica sistemáticamente el reemplazo del piñón de rueda libre y viceversa.


# ) | Cambio de los rodamientos de cigüeñal


- Cambiar los rodamientos correspondientes (anillos exteriores) en los cárteres centrales.
- Extraer el piñón de accionamiento de distribución con un extractor de dos patas.
- Extraer los anillos interiores de los rodamientos de cigüeñal calentando la herramienta 10049
- y el anillo.

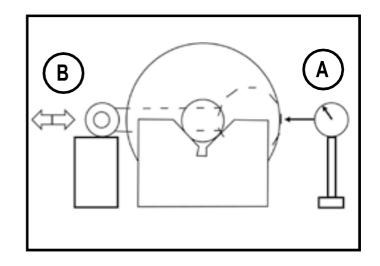


El juego radial en los rodamientos debe ser prácticamente nulo.

• To Para extraer el piñón de accionamiento del balancín, atornillar 2 tornillos de 8 x 125 en los orificios previstos a tal efecto.





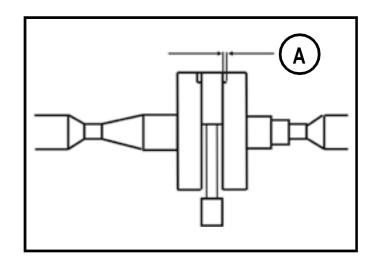

#### ) | Control del cigüeñal

#### Juego radial de la cabeza de biela :

- Coloque el cigüeñal en un tope en «V» y ponga un comparador mecánico [A] en la cabeza de la biela.
- ☐ Empuje [B] la cabeza de la biela hacia el medidor, y luego en sentido contrario. La diferencia entre las dos medidas es el juego radial.

Juego radial de la cabeza de biela : Estándar : 0,008 mm – 0,012 mm Límite permitido : 0,05 mm

Si el juego radial es mayor al límite de tolerancia, el cigüeñal debe ser reemplazado.



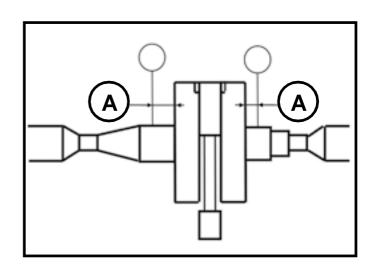

#### <u>Juego lateral de la cabeza de biela :</u>

☐ Mida el juego lateral de la cabeza de la biela [A].

Juego lateral de la cabeza de biela : Estándar : 0,6 mm - 0,85 mm Límite permitido : 1,1 mm

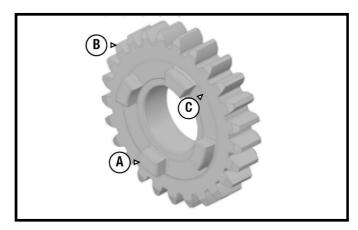
Si el juego es mayor al límite de tolerancia, reemplace el cigüeñal.




#### Control de la desviación radial:

- Ponga el cigüeñal en un dispositivo de alineamiento o en un tope en «V» y coloque un comparador como se muestra en la imagen.
- Luego gire lentamente el cigüeñal. La diferencia máxima entre estas medidas corresponde al descentrado del cigüeñal.

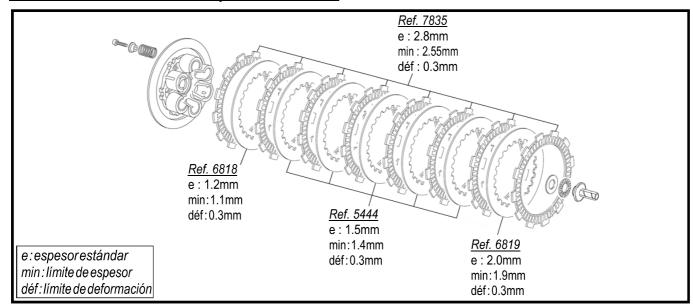
#### Desviación radial:


Estándar : 0,02 mm máximo Límite permitido : 0,08 mm

Si el descentrado es mayor al permitido, reemplace el cigüeñal o haga su alineación para volver a los límites permitidos.



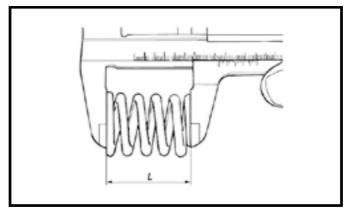
#### ) | Control de la caja de velocidades


- Control del conjunto de piñones.
- Controlar las pestañas de acoplamiento [A], los dientes del piñón [B] y las ranuras de las horquillas [C]. En caso de desgaste o deterioro, cambiar los piñones correspondientes.
- Controlar el estado de las horquillas de selección.
- ☐ Cambiar las horquillas si esnecesario.
- ☐ Controlar el tambor selector, observar si hay deformaciones, desgaste anormal, deterioro.
- □ Cambiar el tambor si esnecesario.





#### Control del embrague


#### Control de los discos lisos y conductores :



#### Control de los muelles de embrague :

Medir el largo libre de los muelles.

Estándar : 50.0mm Límite : 49.0mm



Control de la parte superior del motor

#### Inspección del desgaste del cilindro :

Medir el diámetro interior del cilindro cuando esté frío.

☐ Inspeccionar el interior del cilindro y buscar ranuras o cualquier otro trazo de desgaste anormal.

Si el cilindro está dañado o particularmente desgastado, proceda a reemplazarlo.

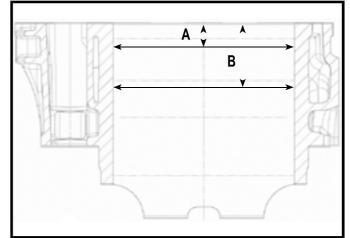
☐ Como el cilindro no se desgasta de manera uniforme en todos los sentidos, tome medidas de un lado a otro y en ambos extremos, tal como se ilustra.

Si una de las medidas del diámetro interior del cilindro es superior al límite permitido, deberá reemplazar el cilindro.

(A)=8 mm (B)=30 mm



Diámetro cilindro (A) = 94.99±0.012 mm Diámetro cilindro (B) = 94.982~94.995 mm Límite de conicidad 0.05 mm Ovalización 0,05 mm


#### Estándar 500 SEF:

Diámetro cilindro (A) = 97.990±0.08 mm Diámetro cilindro (B) = 97.99~98.005 mm Límite de conicidad 0.05 mm Ovalización 0,05 mm

#### Juego de pistón / cilindro

Para definir lo mejor posible el juego, es suficiente medir separadamente el diámetro del pistón y del cilindro, luego calcular la diferencia entre estos dos valores. Medir el diámetro del pistón según el procedimiento «Desgaste del pistón».

Juego de pistón/cilindro: Estándar 0,034 – 0,056 mm Límite 0,11 mm



#### Desgaste de pistón :

• Con la ayuda de un micrómetro, medir el diámetro exterior [A] del pistón en 15 mm [B] por encima de la base del pistón y en el ángulo derecho en relación con el eje del pistón. Si el diámetro exterior de un pistón es inferior al límite permitido, proceda a reemplazarlo.

Piston 450 SEF-R= 94.93 - 94.95 Piston 500 SEF= 97.93 - 97.95

#### Juego segmento / ranura de segmento :

☐ Controlar la base del segmento para verificar que la ranura no presente desgaste irregular.

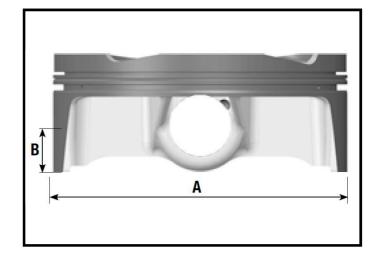
□ Dado que los segmentos se encuentran en sus ranuras, realizar varias medidas con la ayuda de un calibrador de espesor para determinar el juego segmento / ranura.

Segmento de fuego : 0.020-0.065 mm Limit 0.13 mm

Segmento raspador de aceite : 0.020-0.055 mm Limit 0.13 mm

Holgura:

Segmento de fuego : 0.2-0.3 mm Limit 0.5 mm


#### <u>Inspección de desgaste de biela, del eje</u> de pistón y del pistón :

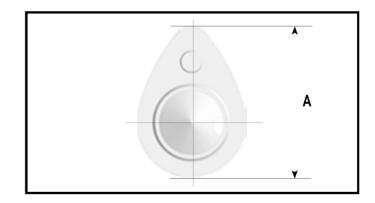
- Controlar visualmente el anillo de retención in situ. Si aparece como dañado o deformado, reemplácelo. Si la ranura del orificio de eje presenta un desgaste excesivo, proceda a reemplazar el pistón.
- Medir el diámetro del eje de pistón con la ayuda de un micrómetro. Si en cualquier parte, el diámetro del eje de pistón es inferior al límite, proceda a reemplazar el eje.
- Medir el diámetro de los dos orificios del eje de pistón en el pistón y el diámetro interior del pie de biela.

Si uno de los diámetros de los orificios medidos en el pistón es incorrecto, proceda a cambiar el pistón.

Si el diámetro del pie de biela es incorrecto, proceda a cambiar la biela.

Diámetro eje de pistón: 18,997-19,000 mm Diámetro orificio de eje de pistón: 20,004-20,009 mm Diámetro interior de pie de biela: 20,007-20,013 mm




#### Desgaste de levas :

• Medire la altura [A] de cada leva con la ayuda de un micrómetro.

Si las levas están desgastadas más allá del límite, proceda a reemplazar el árbol de levas.

Límite de Altura de leva 450 Escape : 37,20 mm

Admisión : 37,62 mm



## <u>Desgaste del árbol de levas y del cojinete de árbol de levas :</u>

• Medir todos los juegos entre el perno de árbol de levas y el cojinete de árbol de levas con la ayuda de un calibrador plástico [A]. Ajustar los tornillos de tapa de árbol de levas luego de haber untado con aceite de motor de forma completa, roscas incluidas.

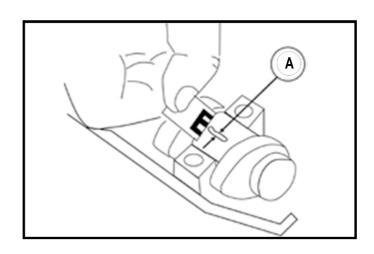


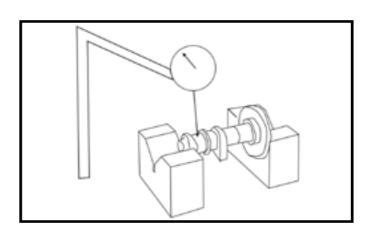
Tornillo de tapa de árbol de levas : 18 Nm.

Si un juego cualquiera es superior al límite, medir el diámetro de cada perno de árbol de levas con un micrómetro.

Si el diámetro del perno de árbol de levas es inferior al valor permitido, proceder al reemplazo de los árboles de levas y medir nuevamente el juego.

Diámetro del perno de árbol de levas Estándar : 23,980 – 23,993 mm


Límite: 23,960 mm


Si el juego se mantiene fuera del límite permitido, se debe reemplazar el conjunto de la culata.

#### Descentrado de árbol de levas :

Medir la desviación radial del árbol de levas. Si se encuentra fuera de especificación, cambiar el árbol de levas.

Desviación radial : Menos de 0,03 mm.





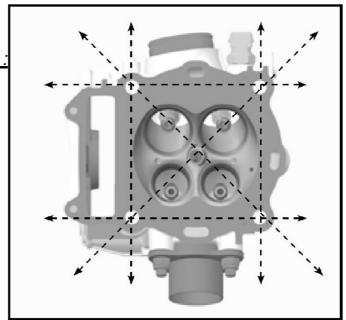
#### ) | Control de la culata

#### Inspección de la deformación de la culata :

• Colocar una regla rectificada [A] en la superficie inferior de la culata en varios puntos distintos y medir la deformación insertando un calibrador de spesor entre la regla rectificada y la culata.

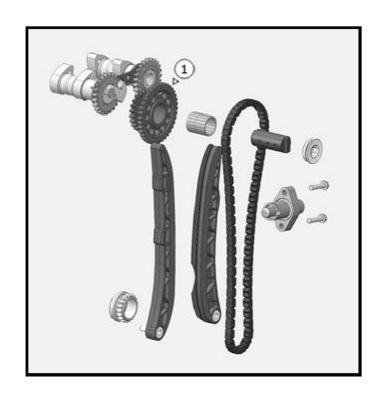
Si la deformación es superior al límite permitido, proceder a reparar la superficie de ajuste. Reemplazar la culata si la superficie de ajuste está muy dañada.

Deformación de culata : Límite = 0.05 mm


#### Juego guía – válvula :

Admisión:

Juego mínimo : 0.02 mm Juego máximo : 0.045 mm


Escape:

Juegomínimo: 0.04mm Juegomáximo: 0.065mm



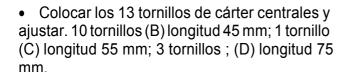
#### ) | Control de la distribución

- ☐ Limpiar todas las piezas.
- Inspeccionar visualmente la cadena de distribución: verificar si no posee un punto duro, resistencia o desgaste. Si así fuera, es necesario cambiarla.
- Inspeccionar visualmente el piñón de accionamiento de distribución. Cámbielo si es necesario.
- Inspeccionar visualmente los patines de distribución : cámbielos si es necesario.
- Inspeccionar visualmente el piñón (1) : cámbielo si es necesario.
- Controlar el juego de las jaulas de agujas cuando el piñón (1) esté montado en su eje.

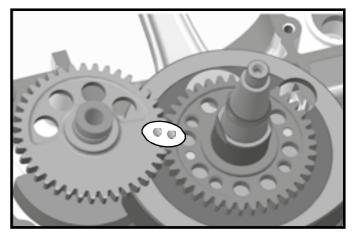


#### Montaje de los cárteres centrales

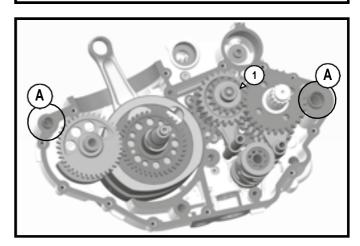
#### CUIDADO

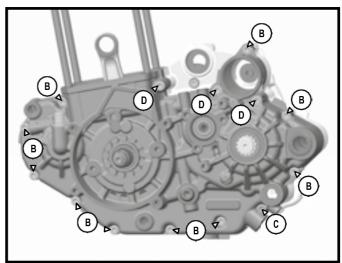

Durante el Montaje, reemplazar el conjunto de las juntas de estanqueidad (Junta de papel, junta tórica...).

- Colocar el cigüeñal y el balancín de equilibrio en el cárter derecho haciendo coincidir los dos puntos.
- Colocar los dos árboles de cajas de velocidad.
- □ Colocar en cada horquilla unrodillo.
- Colocar las horquillas de selección en las ranuras móviles respectivas.
- ☐ Montar el tambor selector.
- ☐ Introducirlas horquillas en la ranura de tambor respectiva.
- ☐ Colocar los ejes de horquilla.



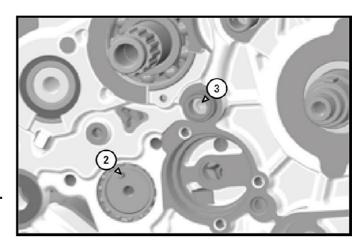

No olvidar de aceitar las piezas en fricción o rotación.


- Colocar los 2 peones de centrado (A) y la arandela (1) en el árbol secundario.
- Colocar el cárter derecho en el conjunto precedentemente premontado.




Par de apriete de los tornillos de cárter centrales : 10 Nm.

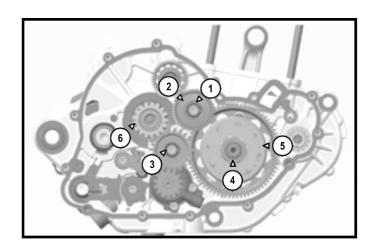









- Volver a los cárteres y ajustar el tornillo (3).
   Par de apriete: 10 Nm.
- □ Volver a montar la clavija de bloqueo colocando correctamente el muelle.
- ☐ Mantener la palanca de bloqueo de velocidad bloqueada.
- □ No olvidar la aguja (2) en el tambor.
- ☐ Montar la estrella y aplicar fijador de roscas azul en el tornillo de tambor y ajustar.

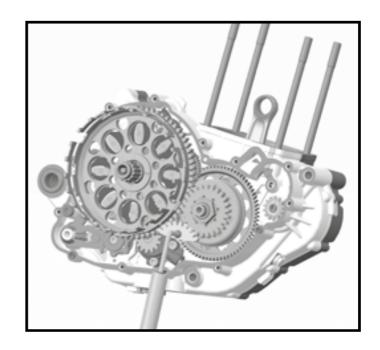

Par de apriete del tornillo de tambor : 10 Nm.



- □ Colocar el eje de selector cuidando de deslizar el muelle en la muesca.
- □ Colocar la bomba de aceite precedentemente ensamblada y ajustar los 3 tornillos de ajuste aplicando el fijador de roscas mediano.

## Par de apriete de los tornillos de tapa de bomba de aceite: 10 Nm.

- Colocar la aguja, el piñón de accionamiento de bomba de agua y el anillo de retención.
- Colocar el piñón de rueda libre y la jaula de agujas.
- Colocar la rueda libre y la campana de rueda libre ensamblada (5) posicionándola correctamente en el cigüeñal y en la chaveta.
- Desengrasar con solvente el fileteado del árbol primario y el fileteado del cigüeñal.
- Aplicar el fijador de roscas mediano en el cigüeñal.
- □ Colocar la arandela e insertar la tuerca (4).
- Colocar el piñón intermedio de bomba de aceite.
- Colocar el anillo de retención (3) y la arandela.
- □ Colocar el limitador de par(2).
- Colocar el anillo de retención (1) y la arandela del eje de limitador.
- Colocar las dos jaulas de agujas en el árbol primario.
- Colocar el piñón (6) en el árbol primario y la campana de embrague. Se debe hacer coincidir las muescas del piñón con la campana.




- ☐ Colocar la arandela acanalada y la nuez de embrague.
- Con la ayuda de la herramienta 5593 bloquear la transmisión y ajustar la tuerca.

Par de apriete de la tuerca de cigüeñal : 120 Nm.

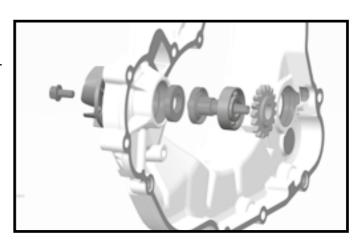
- ☐ Colocar la arandela de seguridad y la tuerca de la nuez.
- ☐ Con la ayuda de la herramienta 5749 bloquear la nuez de embrague y ajustar la tuerca.

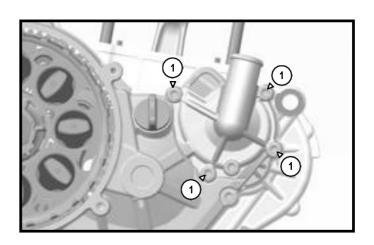
Par de apriete de la tuerca de nuez de embrague 100 Nm.



#### Montaje del cárter deembrague

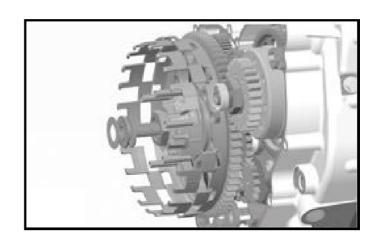
- Calentar el cárter en aproximadamente 70 °C.
- Colocar la bomba de agua en el cárter de embrague.
- Verificar el buen estado de la junta de cárter y colocarlo.
- Volver a montar el cárter de embrague y los 8 tornillos, fuera del cárter de bomba de agua.


Par de apriete de los tornillos de cárter de embrague : 10 Nm.




Cerciórese de que el circuito de engrase del cigüeñal en el cárter esté en buenas condiciones. Reemplazar la junta de labio.

## ) | Montaje del cárter de la bomba de agua

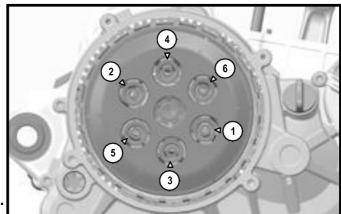

• Colocar los tornillos (1) del cárter de bomba de agua. Cuidar de colocar correctamente la junta tórica situada en el contorno.





#### ) | Montaje del embrague

- □ Colocar 8 discos conductores y 7 discos lisos comenzando por un disco conductor.
- □ Colocar la varilla de empuje, sin olvidar el tope y la arandela.
- ☐ Colocar el plato opresor y los 6 tornillos siguiendo lo indicado en la foto.
- □ Colocar la herramienta de PMH 10338.




#### CUIDADO

No utilizar esta herramienta para un ajuste o desajuste superior a 10 Nm.

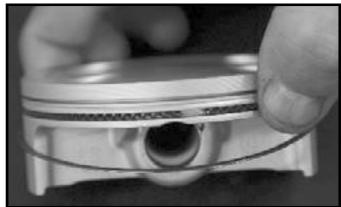
- Colocar la tapa de cárter de embrague atornillando los 4 tornillos. Los 4 tornillos no son del mismo largo. Prestar atención a la junta tórica situada en el contorno de la tapa.
- ☐ Retirar la herramienta de PMH 10338.

Par de apriete de los tornillos de plato: 10 Nm.



#### Montaje del arrancador eléctrico

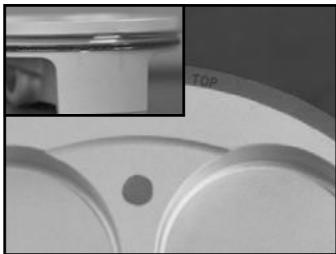
- Lubricar la junta tórica delarrancador.
- Colocar el arrancador eléctrico y atornillar los 2 tornillos.


Par de apriete de los tornillos de arrancador: 10 Nm.

# ) | Inserción de los segmentos en el pistón

□ Colocar el primer riel. Cuidado con el posicionamiento de la abertura, del lado del escape.

• Colocar el extensor en la ranura de la base (la más ancha). La abertura debe encontrarse en el medio. Atención, los extremos de las ondas deben encontrarse en la base.






• Colocar los rieles por encima y por debajo del extensor, en la ranura. Atención, la abertura del riel de la parte superior debe encontrarse en el lado admisión (opuesto al primer riel).



• Colocar el segmento de fuego en la ranura superior. La abertura debe encontrarse del lado escape. Atención, el marcado sobre el segmento será dirigido hacia la parte superior.



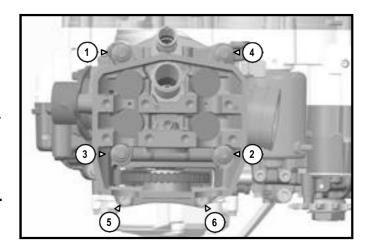
#### ) | Montaje del pistón

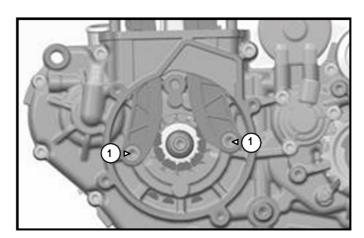
- Colocar el pistón y los segmentos
- Engrasar el eje de pistón y colocarlo.
- Colocar los anillos de retención de eje de pistón.

#### ) | Montaje del cilindro

- Colocar silicona a la unión del cárter derecho e izquierdo.
- ☐ Colocar los peones de centrado y una junta de apoyo.
- Engrasar el faldón del pistón.
- □ Aceitar el cilindro.
- ☐ Colocar el cilindro cuidando los segmentos.
- Colocar el pistón en el PMH y colocar la herramienta 10338.

#### ) | Montaje de la culata


- $\hfill \Box$  Colocar los peones de centrado y la junta de culata.
- ☐ Colocar las arandelas y lastuercas.
- ☐ Ajustar la culata tal como se indica en la foto.


#### Paso 1

Par de apriete de las tuercas 1/2/3/4 : 30 Nm.

#### Paso 2

Par de apriete de las tuercas 1/2/3/4:50Nm. Par de apriete de los tornillos 5/6:10Nm.



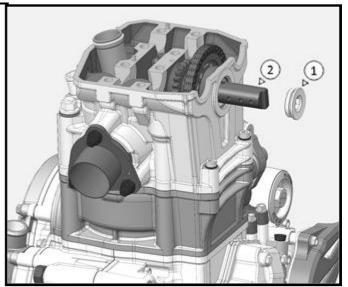


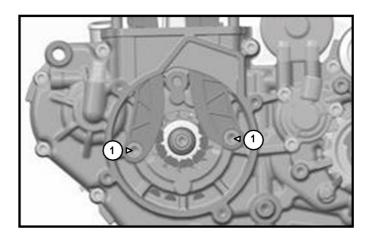
#### Montaje de la cadena de distribución

- Por el orificio de cadena, colocar los 2 patines de distribución.
- Colocar la cadena en el piñón de cigüeñal.
- Colocar el piñón superior de distribución.

#### CUIDADO

Asegúrese de que la marca esté vertical al cilindro, o que la inscripción FLANGE siga el plano de junta de la culata.


- No olvidar las dos jaulas de agujas del piñón.
- Colocar el eje (2) y la tapa (1) con su junta tórica.


Par de apriete de la tapa (1) : 20 Nm.

☐ Aplicar fijador de roscas azul en los dos tornillos (1).

Par de apriete de los tornillos de platines (1) : 10 Nm.

• Colocar el tensor de cadena de distribución. Par de apriete del tensor : 10 Nm.





#### ) | Montaje del rotor

- ☐ Colocar el rotor.
- ☐ Utilizar la herramienta de mantenimiento de rotor 4753.
- ☐ Colocar loctite mediano y ajustar la tuerca central.

Par de apriete del tapón de aceite : 80 Nm.

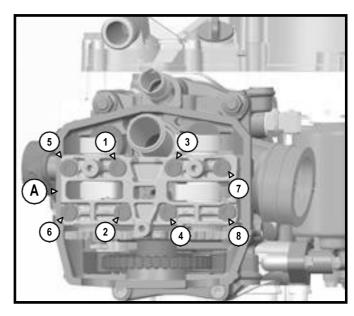
#### Montaje de los árboles de levas y calado de distribución

- ☐ Limpiar y aceitar los cojinetes.
- Colocar los dos árboles de leva asegurándose de que las inscripciones «FLA» o «FLANGE» coincidan con el plano de junta de la culata.
- ☐ Colocar la placa de cojinete(A).
- Atornillar los ocho tornillos de la placa de cojinete de árbol de levas tal como se indica en la foto

#### Par de apriete de los tornillos de cojinete: 12 Nm.

- □ Retirar la herramienta 10338 de PMH.
- Con la ayuda del rotor de encendido, realice como mínimo una vuelta de cigüeñal y controle el calado de distribución.

## ) | Control del juego de válvulas


- El control de juego de válvulas se debe realizar con el motorfrío.
- Con un juego de cuña, medir el espacio entre la caja de engrase y el árbol de levas.

Juego de válvulas Admisión 0.15 – 0.20 mm Escape 0.20 – 0.25 mm

- Si los juegos no están en forma correcta, cambiar las pastillas y para ello debe desmontar la distribución.
- Retirar las cajas.
- ☐ Medir la pastilla, reemplazarla para tener el juego deseado.

Para los espesores de pastillas existentes, remitirse al catálogo de repuestos.





# MONTAJE DEL MOTOR

| <b>)</b>   | Finalización del montaje del motor                                                                    |
|------------|-------------------------------------------------------------------------------------------------------|
|            | □ Limpiar el plano de junta de la tapa de culata.                                                     |
|            | ☐ Aplicar un fijador de rosca de silicona en las medialunas.                                          |
|            | □ Colocarla junta de tapa de culata y la tapa de culata.                                              |
|            | • Ajustar la tapa de culata sin olvidar las juntas tóricas de los 3 tornillos.                        |
|            | Par de apriete de los tornillos de tapa de culata : 10 Nm.                                            |
|            | □ Aplicar grasa para cobre en la rosca de la bujia.                                                   |
|            | Par de apriete de la bujia : 16 Nm.                                                                   |
|            | □ Colocar la tapa de PMH, cerrarlo a 15 Nm.                                                           |
| <u>}  </u> | Montaje del cárter de encendido                                                                       |
|            | □ Colocar los peones de centrado.                                                                     |
|            | Colocar la junta de cárter de encendido.                                                              |
|            | Aplicar silicona en el pasacable.                                                                     |
|            | <ul> <li>Colocar los 4 tornillos del cárter de encendido.</li> <li>Par de apriete : 10 Nm.</li> </ul> |
|            | • En el árbol secundario, colocar la junta tórica, el separador, el piñón, la arandela.               |
|            | □ Aplicar fijador de roscas rojo en la tuerca Ajustar a 100 Nm.                                       |

# TABLA DE PARES DE APRIETE

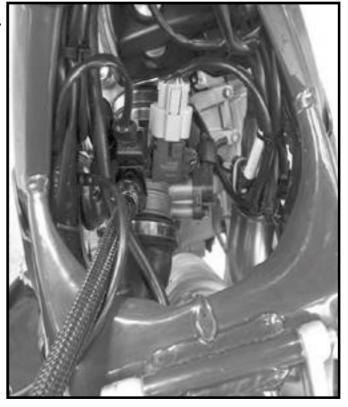
| CHASIS                                           |    |      |      |
|--------------------------------------------------|----|------|------|
| Tornillo de botón de parada                      | M3 | 3Nm  |      |
| T map sensor screw                               | M4 | 5Nm  |      |
| Tornillo de la tapa del cilindro maestro         | M4 | 7Nm  |      |
| Tornillo de la tapa del cuerpo de inyección      | M4 | 3Nm  |      |
| Tornillo de protección del chasis                | M4 | 2Nm  |      |
| Tornillo de soposrte de batería                  | M4 | 7Nm  |      |
| Tornillo del velocimetro                         | M4 | 5Nm  | Azul |
| Tornillos de luz trasera                         | M4 | 1Nm  | Azul |
| Tuerca de radios                                 | M4 | 5Nm  |      |
| Otro tornillo del chasis                         | M5 | 7nm  |      |
| Placa de retorno de caballete                    | M5 | 7Nm  | Azul |
| Tornillo de control de gas                       | M5 | 10Nm |      |
| Tornillo de la tapa del filtro                   | M5 | 7Nm  | Azul |
| Tornillo de motor de paso a paso                 | M5 | 8Nm  |      |
| Tornillo de purga de aire de horquilla           | M5 | 3Nm  |      |
| Tornillo de soporte de la manguera de freno      | M5 | 7Nm  | Azul |
| Tornillo de soporte del inyector                 | M5 | 8Nm  | Azul |
| Tornillo de soporte del protector de mano        | M5 | 10Nm |      |
| Tornillo de TPS                                  | M5 | 8Nm  |      |
| Tornillo del extremo del pedal de freno          | M5 | 7Nm  | Azul |
| Tornillo del interruptor de luz                  | M5 | 7Nm  |      |
| Tornillo del tanque de expansión                 | M5 | 10Nm | Azul |
| Tornillo regulador                               | M5 | 8Nm  | Azul |
| Tuerca de soporte del filtro de aire             | M5 | 10Nm |      |
| Goma protector amortiguador                      | M6 | 12Nm | Azul |
| Otro tornillo del chasis                         | M6 | 10Nm |      |
| Tornillo Db killer                               | M6 | 10Nm |      |
| Tornillo de ajuste del pedal de freno            | M6 | 8Nm  |      |
| Tornillo de ajuste del tope del pedal de freno   | M6 | 8Nm  |      |
| Tornillo de bateria                              | M6 | 10Nm |      |
| Tornillo de bloqueo del asiento                  | M6 | 10Nm | Azul |
| Tornillo de bomba de embrague                    | M6 | 10Nm |      |
| Tornillo de bomba de freno                       | M6 | 10Nm |      |
| Tornillo de bomba de freno trasero               | M6 | 8Nm  |      |
| Tornillo de protección de horquilla              | M6 | 8Nm  | Azul |
| Tornillo de protección del piñón de cadena       | M6 | 12Nm | Azul |
| Tornillo de soporte del velocimetro              | M6 | 10Nm | Azul |
| Tornillo del panel lateral del radiador (tanque) | M6 | 3Nm  |      |
| Tornillo del terminal del relé de arranque       | M6 | 6Nm  |      |
| Tornillo deslizante de cadena                    | M6 | 8nm  | Azul |
| Tornillo guardabarros delantero                  | M6 | 12Nm | Azul |
| Tornillo guía de cadena                          | M6 | 12Nm | Azul |
| Tornillo inferior de la protección del motor     | M6 | 8Nm  | Azul |
| Tornillo protector de cadena                     | M6 |      |      |

# TABLA DE PARES DE APRIETE

| CHAS                                       | CHASIS       |       |                |  |
|--------------------------------------------|--------------|-------|----------------|--|
| Tornillo selector                          | M6           | 12Nm  | Azul           |  |
| Tuerca del cable de arranque               | M6           | 7Nm   |                |  |
| Otro tornillo del chasis                   | M8           | 25Nm  |                |  |
| Tornillo de columna de dirección           | M8           | 25Nm  | Grasa de cobre |  |
| Tornillo de corona                         | M8           | 30Nm  |                |  |
| Tornillo de disco de freno                 | M8           | 35Nm  | Rojo           |  |
| Tornillo de disco de freno                 | M8           | 25Nm  | Grasa de cobre |  |
| Tornillo de la brida del manillar          | M8           | 20Nm  | Grasa de cobre |  |
| Tornillo de platina de horquilla inferior  | M8           | 12Nm  | Grasa de cobre |  |
| Tornillo de platina de horquilla superior  | M8           | 17Nm  | Grasa de cobre |  |
| Tornillo de purga de la pinza delantera    | M8           | 10Nm  |                |  |
| Tornillo de roller de cadena               | M8           | 25Nm  | Azul           |  |
| Tornillo de soporte de culata              | M8           | 30Nm  | Azul           |  |
| Tornillo de tope de dirección              | M8           | 25Nm  | Azul           |  |
| Tornillo guía de la cadena del chasis      | M8           | 25Nm  | Azul           |  |
| tornillo inferior de subchasis             | M8           | 25Nm  | Azul           |  |
| Tornillos para patas de horquilla          | M8           | 20Nm  | Grasa de cobre |  |
| Tuerca de gripster                         | M8           | 12Nm  |                |  |
| Tuerca de válvulade neumatico              | M8           | 8Nm   |                |  |
| Tuerca del tensor de cadena                | M8           | 25Nm  |                |  |
| Tuerca superior de subchasis               | M8           | 25Nm  |                |  |
| Eje del motor                              | M10          | 60Nm  |                |  |
| Eje del pie del amortiguador               | M10          | 50Nm  |                |  |
| Eje superior de amortiguador               | M10          | 50Nm  |                |  |
| Tornillo banjo de manguera de freno        | M10          | 25Nm  |                |  |
| Tornillo de soporte del manillar           | M10          | 40Nm  | Rojo           |  |
| Tornillo del pedal de freno                | M10          | 25Nm  |                |  |
| Tuerca de apoyo                            | M10          | 25Nm  |                |  |
| Atornille la sonda lambda                  | M12          | 50Nm  |                |  |
| Atornille la sonda lambda                  | M12          | 30Nm  |                |  |
| Eje de bieleta delta                       | M12          | 50Nm  |                |  |
| Eje de bieleta H                           | M12          | 50nm  |                |  |
| Eje de basculante                          | M16          | 100Nm |                |  |
| Tornillo superior de columna de dirección  | M20          | 30Nm  |                |  |
| Tuerca del eje de la rueda delantera       | M20          | 50Nm  | Graisse cuivre |  |
| Tuerca de rueda trasera                    | M24          | 100Nm | Grasa          |  |
| Tornillo del interruptor del faro (Racing) | Parker       | 2nm   |                |  |
| Tornillos protectores de mano              | Parker       | 3Nm   |                |  |
| Tornillos protectores de mano              | Parker       | 3Nm   |                |  |
| Tuerca de rueda trasera                    | Parker       | 2Nm   |                |  |
| Tornillo de ventilador                     | uto-perforan | 3nm   |                |  |
| Bridas                                     |              | 7Nm   |                |  |

| МОТ                                                 | OR    |            |                |
|-----------------------------------------------------|-------|------------|----------------|
| Tornillo de la placa de bloqueo del cojinete        | M5    | 8Nm        | Azul           |
| Tornillo del sensor de velocidad del motor          | M5    | 7Nm        | Rojo           |
| Tornillo descompresor                               | M5    | 8Nm        | Azul           |
| Tornillo recolector de aceite                       | M5    | 7Nm        | Azul           |
| Tornillos del estator                               | M5    | 7Nm        | Rojo           |
| Tornillo de bloqueo de seleccion                    | M6    | 10Nm       | Azul           |
| Tornillo de bombín del embrague                     | M6    | 10Nm       | Grasa          |
| Tornillo de carter de encendido                     | M6    | 10Nm       | Grasa          |
| Tornillo de carter de encendido                     | M6    | 10Nm       | Grasa          |
| Tornillo de cilindro externa                        | M6    | 10Nm       | Azul           |
| Tornillo de guía de distribución                    | M6    | 12Nm       | Rojo           |
| Tornillo de la tapa de la bomba de agua             | M6    | 10Nm       | Grasa          |
| Tornillo de la tapa de la culata                    | M6    | 10Nm       | Grasa          |
| Tornillo de motor dee arranque                      | M6    | 10Nm       | Grasa          |
| Tornillo de muelle de embrague                      | M6    | 12Nm       | Rojo           |
| Tornillo de muelle de embrague                      | M6    | 10Nm       |                |
| Tornillo de muelle de embrague                      | M6    | 10Nm       | Grasa          |
| Tornillo del eje del piñón de arranque              | M6    | 12Nm       | Rojo           |
| Tornillo del eje limitador                          | M6    | 12Nm       | Rojo           |
| Tornillo del obturador del tensor de distribución   | M6    | 7Nm        |                |
| Tornillo eje de piñón intermedio de bomba de aceite | M6    | 10Nm       | Grasa          |
| Tornillo estrella de seleccion                      | M6    | 10Nm       | Azul           |
| Tornillos de la placa de guía de árbol de levas     | M6    | 10Nm       | Azul           |
| Tornillos de la tapa de la bomba de aceite          | M6    | 10Nm       | Azul           |
| Tornillos del cárter principal                      | M6    | 10Nm       | Grasa          |
| Tuerca del rotor de la bomba de agua                | M6    | 10Nm       | Azul           |
| Tuerca del tubo de escape                           | M6    | 7Nm        | Grasa          |
| Eje de tubo de escape                               | M8    | 25Nm       |                |
| Tornillo de tope del eje de selección               | M8    | 15Nm       | Rojo           |
| Tornillo del cojinete del árbol de levas            | M8    | 12Nm       | Grasa          |
| Tuerca del tubo de escape                           | M8    | 25Nm       |                |
| Bujia                                               | M10   | 15Nm       | Grasa de cobre |
| Eje de cylindro                                     | M10   | 25Nm       | Azul           |
| Tapa de punto muerte                                | M10   | 10Nm       | Grasa          |
|                                                     |       | 1er passe  |                |
|                                                     |       | 15Nm       |                |
| Tuerca de culata                                    | M10   | 2eme passe |                |
|                                                     | 11120 | 30Nm       |                |
|                                                     |       | 3eme passe |                |
|                                                     |       | 50 Nm      | Grasa          |
| Sensor de temperatura de agua                       | M12   | 20Nm       | Jaune          |
| Tuerca de encendido                                 | M12   | 80Nm       | Azul           |
| Regulador de presión de aceite                      | M16   | 20Nm       | Grasa          |
| Tapón de drenaje magnético                          | M16   | 25Nm       | Grasa          |
| Colador del compartimento del cigüeñal              | M18   | 25Nm       | Grasa          |
| Conexión de agua                                    | M20   | 15Nm       | Jaune          |
| Engranaje primario / tuerca del cigüeñal            | M20   | 120Nm      | Azul           |

# LIMPIEZA DEL CUERPO DE INYECCIÓN


## ) | Material

- ☐ Limpiador Carbu o Netoyant Universel de la marca MOTUL.
- ☐ Llave plana de 8.
- ☐ Destornillador de casquillo de 7.
- ☐ Llave allen de 2,5.



## Desmontaje del cuerpo de inyección

- ☐ Desmonte el asiento.
- ☐ Desmonte el reservorio.
- Afloje las abrazaderas del cuerpo de inyección.
- Desmonte la tapa del balancín.
- ☐ Desmonte el cable de acelerador.
- Desmonte el cuerpo.

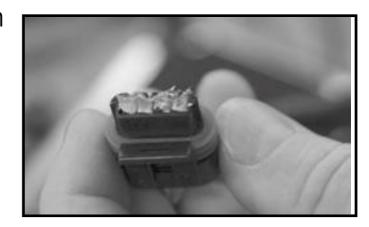


# LIMPIEZA DEL CUERPO DE INYECCIÓN

- Desconecte cada conector.
- Inspeccione visualmente.






- Limpie con un limpiador Carbu o limpiado universal.
- · Sople.





## ) | Limpieza del cuerpo deinyección

- Limpie el cuerpo de inyección con Net Carbu.
- ☐ Limpie cuidadosamente el tramo de la mariposa del gas de cada lado, abriendo el gas totalmente.
- ☐ Limpie el inyector.
- ☐ Sople.



## ) | Montaje del cuerpo de inyección

Vuelva a montar los elementos en el orden inverso del desmontaje, coloque la grasa **especial para conectores** en el interior de las conexiones (alimentación inyector, TPS, etc.).

Si usted desmonta el manguito de admisión, ¡preste atención al sentido!

- ☐ Regule el guardacable de gas.
- □ Desconecte el conector del medidor. Inspeccionar visualmente los conectores.
- ☐ Limpiar con un limpiador carbu/universel.
- □ Sople.





- Aplique grasa especial para conectores.
- Vuelva a conectar.



## CAMBIO DEL SENSOR

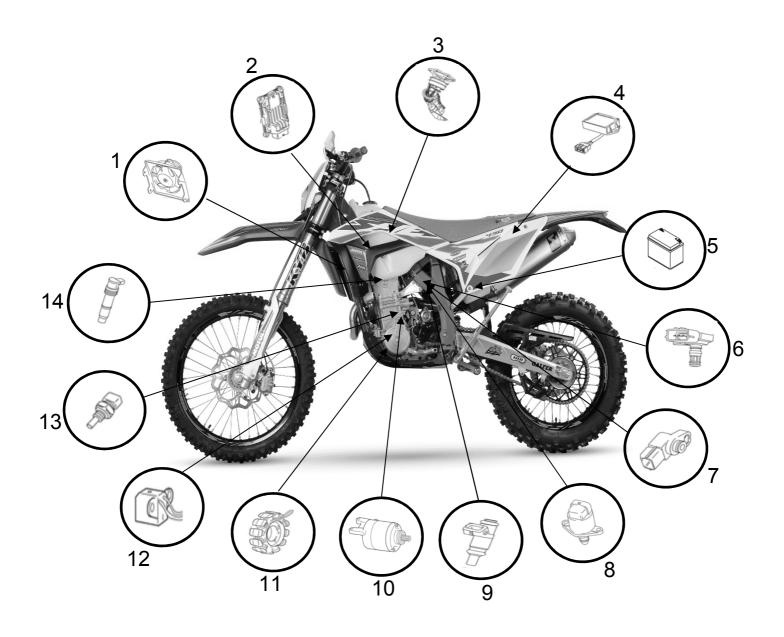
## **TPS**

The El sensor TPS del cuerpo de inyección mide la posición de la mariposa de abertura. Su posicionamiento es muy importante para el funcionamiento de la moto.

Si usted lo reemplaza, siga este procedimiento.

- Desenroscar el tornillo (1) y retirar el sensor TPS.
- Volver a posicionar el nuevo sensor TPS así como el tornillo (1) sin ajustarlo.
- Conectar la moto y abrir el software de diagnóstico Exxotest (ver procedimiento más adelante).

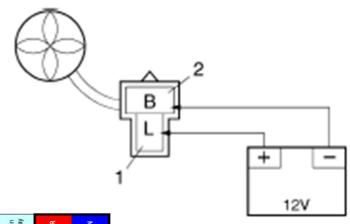



Haga clic en el logo Menu Diagnostic



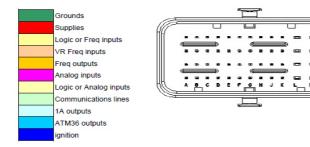
• Luego sobre Sherco → M3C → Medición de parámetros → Posición de la mariposa




## ) Componentes eléctricos



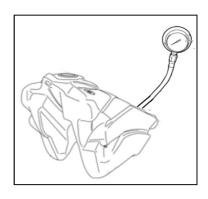
| Posición | Designación    | Posición | Designación          |
|----------|----------------|----------|----------------------|
| 1        | Ventilador     | 8        | Motor de paso a paso |
| 2        | CDI            | 9        | Inyector             |
| 3        | Bomba gasolina | 10       | Arranque             |
| 4        | Regulador      | 11       | Alternador           |
| 5        | Batería        | 12       | Sensor Hall          |
| 6        | Sensor Map     | 13       | Sensor T°            |
| 7        | Sensor TPS     | 14       | Bobina               |

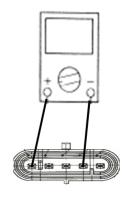

### ) 1- Control del ventilador

- Desconectar el ventilador de la instalación eléctrica.
- Conectar una batería 12V directamente en el conector del ventilador.
- Verificar que el ventilador gira correctamente sin ruido anormal.



### ) 2-CDI


| 1 | VSENS         | CAN_H        | CAN_L              | CPS- | CPS+          | protecte<br>d | protecte<br>d | protecte<br>d | protecte<br>d | Main<br>Relay            | VBR                | IGN           |
|---|---------------|--------------|--------------------|------|---------------|---------------|---------------|---------------|---------------|--------------------------|--------------------|---------------|
| 2 | protecte<br>d | Rpm<br>Gauge | Caniste<br>r Purge | TSW  | protecte<br>d | MAP           | SGND2         | protecte<br>d | Stop          | FAN<br>Motor<br>(optiona | Hego<br>HEATE<br>R | protecte<br>d |
| 3 | ACC_R<br>LY   | MIL          | SGND1              | STA2 | ground        | TIA           | TPS           | VEH<br>SPEED  | protecte<br>d | protecte<br>d            | FUEL               | PGND          |
| 4 | VBK           | VBD          | STB2               | STA1 | STB1          | 100           | Hego          | protecte<br>d | Carto         | protecte<br>d            | (0) (NI            | PGND          |
|   | Α             | В            | С                  | D    | E             | F             | G             | Н             | J             | K                        | L                  | M             |




## ) 3-Bomba de gasolina

- Desconectar la manguera de bomba de gasolina y conectar directamente la herramienta 8691.
- Poner el contacto para activa la bomba de gasolina.
- Hay que tener una presión estable de 3 bares.
- Control de la alimentación de bomba.
   Conectar un multímetro entre el terminal positivo de la bomba (cable verde) y el termina negativo (cable azul).

Tensión de alimentación: 12V

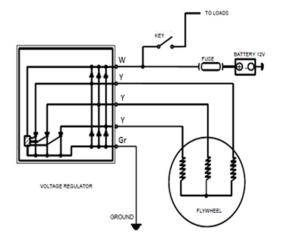




### **ELECTRICAL PART**

### ) 4- Control del regulador de voltaje

• Regulador de tensión:


Tensión de salida (Cable blanco) A 3500 Tr/min : 14.4V +/- 0.5V

• Control del puente de diodos :

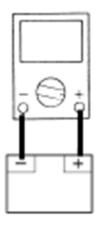
Conectar el multímetro entre el positivo (cable blanco)

Y cada fases (cable amarillo).

Una resistencia debe ser mesurar únicamente en un lado.



### ) 5- Control de batería


 Conectar un multímetro entre las bornas + y - de la Batería para verificar la tensión.

#### Valores:

12.8V → Batería cargada

12.7V o menos → Cargar batería

Menos de 12V → Reemplazar la batería

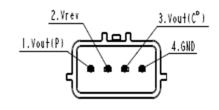


#### ■ Sistema KEYLESS

La moto tiene un sistema «keyless». Permite arrancar la moto sin llave o interruptor ON/OFF. Se enciende automáticamente y se parada después de 30 segundos de inactividad de la moto. En general, las baterías de lones de litio son más ligeras que las baterías de plomo y tienen un menor índice de autodescarga y una mayor potencia de arranque con temperaturas por encima de 15 °C (60 °F). Sin embargo, la potencia de arranque de las baterías de iones de litio se ve más afectada por las temperaturas bajas que la de las baterías de plomo.

Es posible que deba Intentarse arrancar varias veces. Pulsar el botón del motor de arranque durante 5 segundos y esperar 30 segundos entre cada Intento. Estas pausas son necesarias para que el calor que se genera pueda distribuirse por la batería de lones de litlo y para evitar que esta resulte dañada.

SI, con una temperatura Inferior a 15 °C (60 °F), una batería de lones de litlo cargada no es capaz de accionar el motor de arranque o si solo lo acciona débilmente, debe calentarse internamente para aumentar la potencia de arranque (salida de corriente). A medida que aumenta la temperatura, también lo hace la potencia de arranque.


#### ) 6- Control del sensor MAP

- Verifique el voltaje de salida del sensor.
- Conectar el multímetro al sensor (lado de la instalación eléctrica) entre el terminal N°3 (positivo) y el terminal N°4 (negativo).

Luego, entre el terminal N°1 (positivo) y el terminal N°4 (negativo).

Voltaje de salida del sensor :

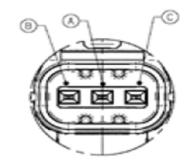
Entre 3 y 5 V



### ) 7- Control del sensor TPS

Medida de la tensión de salida del sensor TPS.
 Conecte un multímetro a los terminales de salida
 Del sensor TPS (Positivo [B] – negativo [A]).
 Manteniéndolo en la posición completamente cerrada:




#### Tensión de salida del sensor TPS: 0.4V - 0.6V

Medida de la tensión de entrada del sensor TPS.
 Conecte un multímetro a los terminales de entrada
 Del sensor TPS (Positivo [C] – negativo [A]).



Medida de la resistencia del TPS :
 Retire el cuerpo de inyección y mida la

Resistencia directamente en los terminales des sensor



#### Mariposa cerrada:

Entre + (rojo) y - (negro) : 5 +/- 20%

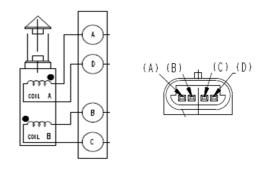
Entre sígnalo (azul) y – (negro) : 1.25 à 1.55

Entre sígnalo (azul) y + (rojo) : 5.3 +/- 20%



#### Mariposa abierto:

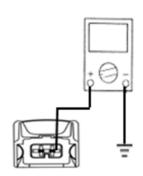
Entre + (rojo) y - (negro) : 5 +/- 20%


Entre sígnalo (azul) y – (negro) : 4.6 +/- 20% Entre sígnalo (azul) y + (rojo) : 2.05 +/- 20%

### ) 8- Control del motor de paso a paso

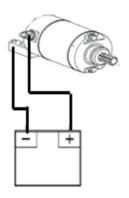
- Control de las bobinas del motor de paso a paso.
- Conecte el multímetro al sensor (lado de la instalación eléctrica) entre el terminal N°A y el terminal N°D.

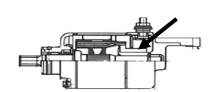
Y entre el terminal **N°B** y el terminal **N°C**.


Debe haber continuidad entre los terminales. Si no, reemplace el motor.



## ) 9- Control del inyector


- Mida la tensión de entrada del inyector
- Conectar un multímetro entre la alimentación (cable verde) y la masa.


Tensión de alimentación del inyector: 12V



### ) 10- Control del motor de arrangue

- Retirar el motor de arranque y colocarlo en un tornillo de banco.
- Conecte una batería directamente al motor de arranque (positivo en el terminal del motor, negativo en el cuerpo del motor de arranque) como se muestra en el diagrama.
- En el caso de funcionamiento anormal, abra el cuerpo del motor de arranque para limpiar el contacto entre las escobillas de carbón y la pista del motor.





### ) 11- Control del alternador

 Control de la resistencia de las bobinas del alternador.

Conectar un multímetro entre los cables del alternador (cables amarillos) y mida la resistencia.

Resistencia bobina: 0.44Ω +/- 15%

 Control de la tensión de salida del alternador.

Conectar un multímetro entre los cables amarillos y la masa (Multímetro debe ser en posición alternativa). Mida la tensión de salida.

Al ralentí: 22V +/- 2V

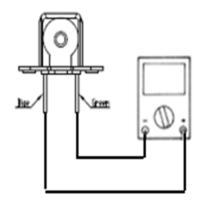
A 6000 tr/min: 77V +/- 3V



### 12- Control del sensor Hall (cigüeñal)

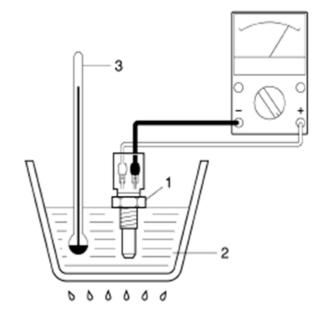
Control de la resistencia del sensor.

Conectar un multímetro entre el cable verde y el cable azul.


Resistencia del sensor : 120  $\Omega$  +/- 10%

Control de tensión de salida.

Conectar el sensor entre el cable azul y la masa.


A 300 tr/min: 1.7V minimum

A 10000 tr/min: 120V maximum



### ) 13- Control del sensor de temperatura

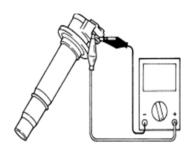
- Desmontar el sensor de temperatura.
- Sumerja el sensor [1] en un recipiente lleno de refrigerante [2] asegurándose de dejar los terminales mirando hacia el líquido.
- Sumerja un termómetro [3] en el líquido de manera a control su temperatura.
- Calentar el líquido lentamente y comprobar la resistencia del sensor utilizando un multímetro conectado como se muestra en el diagrama en función de la temperatura del líquido, consultando la tabla siguiente.

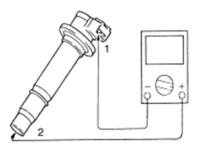


| TEMPS (°C) | RESISTANCE (Ω) |
|------------|----------------|
| 25         | 3000           |
| 30         | 2415           |
| 40         | 1620           |
| 50         | 1081           |
| 60         | 748            |
| 70         | 528            |
| 80         | 379            |
| 90         | 278            |
| 100        | 206            |

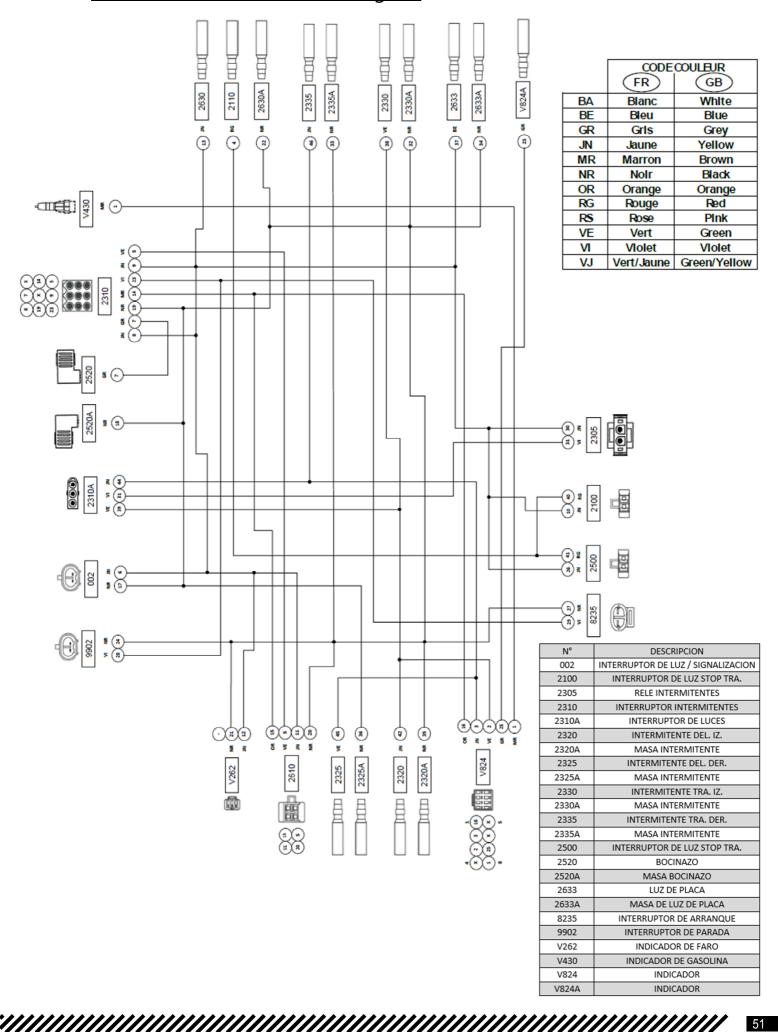
### 14- Control de bobina de encendido

 Control de la resistencia de la bobina primaria.

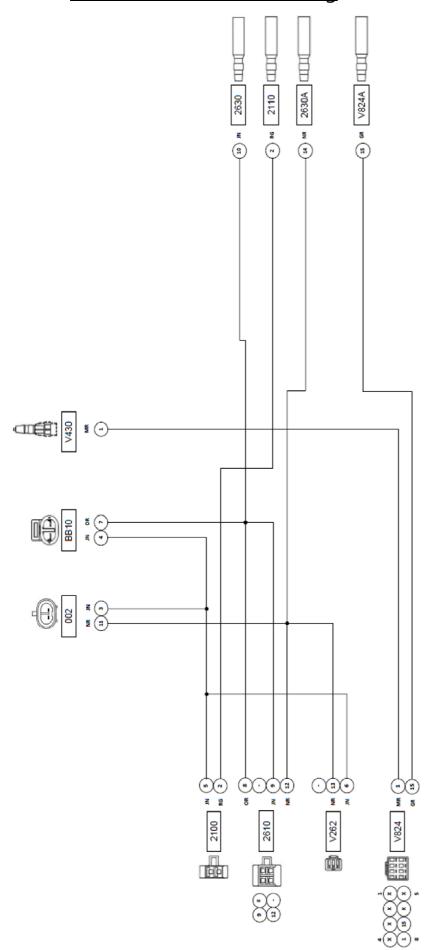

Conecte el multímetro como se muestra en el diagrama y mida la resistencia.


# Resistencia de la bobina primaria : Entre $0.85 \ y \ 1.5 \ \Omega$

 Control de la resistencia de la bobina secundaria.

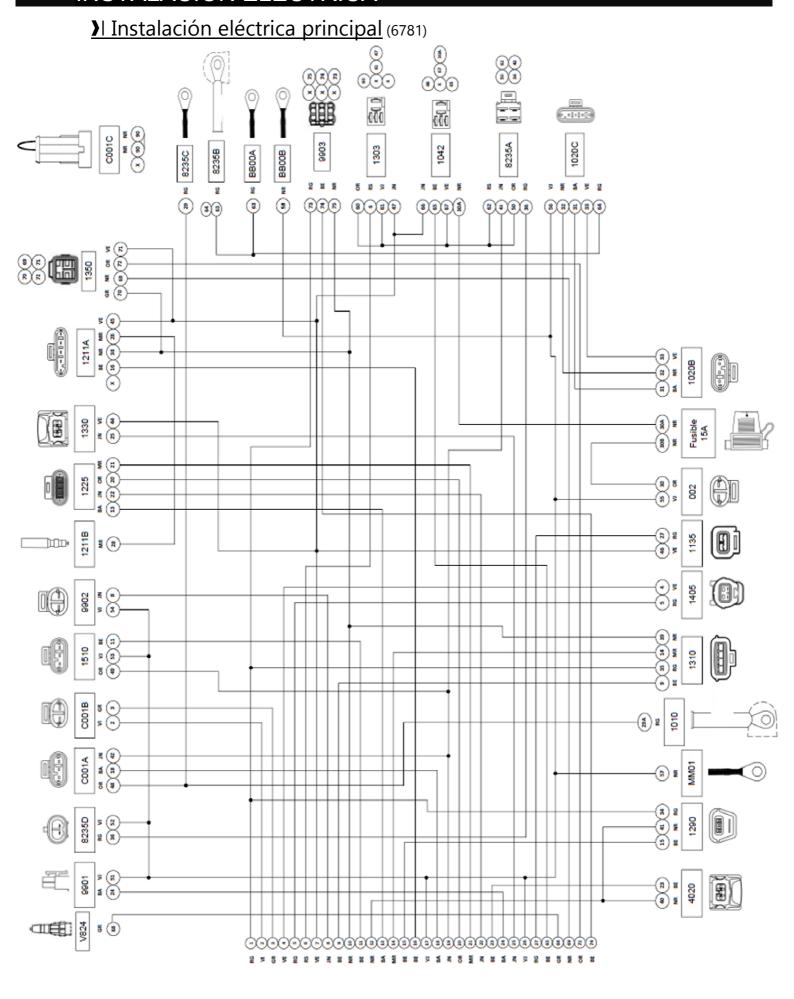

Conecte el multímetro como se muestra en el diagrama y mida la resistencia.

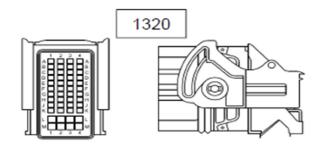
Resistencia de la bobina secundaria : Entre 10 y 14 KΩ

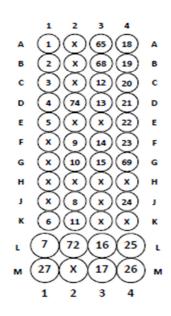





### Instalación de luces homologada (8145)





## <u>**)**I Instalación de luces racing</u> (6845)



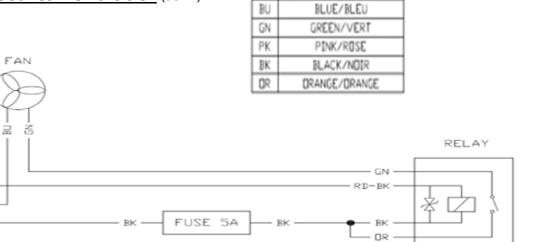

|    | CODECOULEUR |              |  |  |
|----|-------------|--------------|--|--|
|    | FR          | GB           |  |  |
| BA | Blanc       | White        |  |  |
| BE | Bleu        | Blue         |  |  |
| GR | Gris        | Grey         |  |  |
| JN | Jaune       | Yellow       |  |  |
| MR | Marron      | Brown        |  |  |
| NR | NoIr        | Black        |  |  |
| OR | Orange      | Orange       |  |  |
| RG | Rouge       | Red          |  |  |
| RS | Rose        | Pink         |  |  |
| VE | Vert        | Green        |  |  |
| VI | Vlolet      | Vlolet       |  |  |
| VJ | Vert/Jaune  | Green/Yellow |  |  |

| N°    | DESCRIPCION             |
|-------|-------------------------|
| 2     | INTERRUPTOR DE LUCES    |
| 2100  | INTERRUPTOR DE LUZ STOP |
| 2110  | LUZ STOP                |
| 2610  | LUZ DELANTERA           |
| 2630  | LUZ TRASERA             |
| 2630A | MASA DE LUCES           |
| BB10  | ALIMENTACION            |
| V262  | INDICADOR DE LUZ        |
| V430  | INDICADOR DE GASOLINA   |
| V824  | INDICADOR               |
| V824A | INDOCADOR               |








|    | CODECOULEUR |              |  |
|----|-------------|--------------|--|
|    | FR          | GB           |  |
| BA | Blanc       | White        |  |
| BE | Bleu        | Blue         |  |
| GR | Gris        | Grey         |  |
| JN | Jaune       | Yellow       |  |
| MR | Marron      | Brown        |  |
| NR | NoIr        | Black        |  |
| OR | Orange      | Orange       |  |
| RG | Rouge       | Red          |  |
| RS | Rose        | Pink         |  |
| VE | Vert        | Green        |  |
| VI | Vlolet      | Vlolet       |  |
| VJ | Vert/Jaune  | Green/Yellow |  |

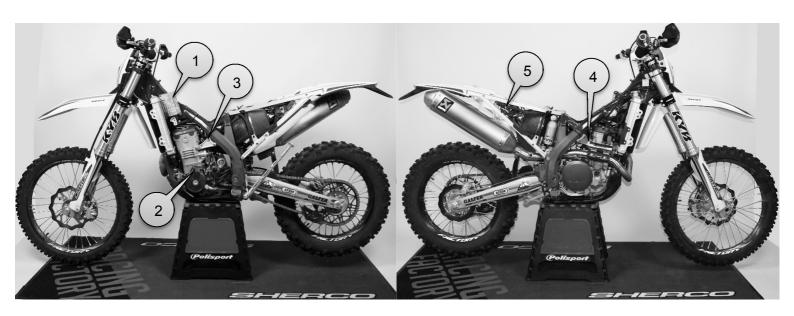
|         | Descripción                          |
|---------|--------------------------------------|
| 002     | Interruptor de luz                   |
| 1010    | Arranque                             |
| 1020B   | Alternador                           |
| 1020C   | Regulador                            |
| 1042    | Relé general                         |
| 1135    | Bobina de encendido                  |
| 1211A   | Bomba de combustible                 |
| 1211B   | Indicador de combustible             |
| 1225    | Motor de paso a paso                 |
| 1290    | TPS                                  |
| 1303    | Relé de alimentación de inyección de |
| 1303    | encendido                            |
| 1310    | Medidor de flujo de aire             |
| 1320    | Calculador                           |
| 1330    | Inyector                             |
| 1350    | Sonda de oxigeno                     |
| 1405    | Sensor de cigüeñal                   |
| 1510    | Ventilador                           |
| 4020    | Sensor de temperatura                |
| 8235A   | Interruptor de arranque (relé)       |
| 8235B   | Interruptor de arranque (batería)    |
| 8235C   | Interruptor de arranque (motor)      |
| 8235D   | Interruptor de arranque del motor    |
| 9901    | Switch mapa                          |
| 9902    | Switch stop motor                    |
| BB00A   | Batería                              |
| C001A   | Conector de diagnóstico              |
| C001B   | Conector de diagnóstico              |
| C001C   | Enchufe del conector de diagnóstico  |
| V824    | Pantalla LED                         |
| Fusible | Fusible 15A                          |
| MM001   | Ponto de masa                        |

COLOR CODE

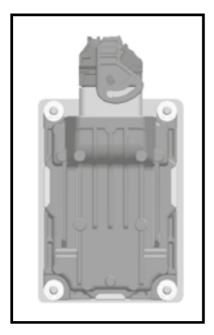
RED/ROUGE

## ) Instalación eléctrica ventilador (3577)

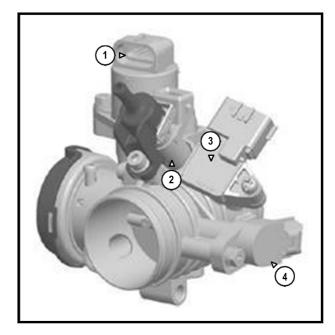



RD

3-WAY FAN SUPPLY


RD-BK

## ) 1 1- Presentación del sistema de inyección SYNERJECT


1.1- La Sherco 450 SEF-R está equipada con un sistema de inyección Synerject compuesto por un medidor M3C, un cuerpo de inyección Ø42mm, un encendido y un haz eléctrico específicos.



| N° | Designación                                                                | Emplazamiento                                                          |
|----|----------------------------------------------------------------------------|------------------------------------------------------------------------|
| 1  | Medidor Synerject M3C                                                      | Lado izquierdo del chasis                                              |
| 2  | Sensor de régimen del motor (pick-up)                                      | Parte superior del cárter de encendido                                 |
| 3  | Cuerpo de inyección Synerject Ø42 mm                                       |                                                                        |
| 4  | Sensor de temperatura del agua                                             | En la parte trasera de la culata, lado derecho                         |
| 5  | Conector de diagnóstico estanco de 2 vías (etiqueta con inscripción "ECU") | En la parte delantera derecha de la moto entre el radiador y el cuadro |



Medidor Synerject M3C



Cuerpo de inyección Synerject

| N° | Designación                                                |
|----|------------------------------------------------------------|
| 1  | Motor paso a paso (regulación de ralentí y freno de motor) |
| 2  | Inyector                                                   |
| 3  | Sensor de temperatura / presión (TMAP)                     |
| 4  | TPS : sensor de posición de la mariposa                    |

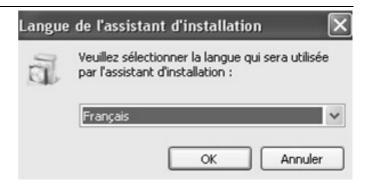
## 1.2-Descripción de la herramienta de diagnóstico Exxodiag referencia 4967

Con la herramienta de diagnóstico, podrá realizar operaciones de diagnóstico, actualizar la cartografía de inyección y verificar algunos datos (N° de serie de la moto, cantidad de horas de funcionamiento, etc.).

## 1.3- Composición de la herramienta de diagnóstico

En el maletín, encontrará un cable de salida USB a MUX, un periférico MUX, un cable MUX a conector de diagnóstico de la moto, un CD de instalación y un manual de instrucciones.

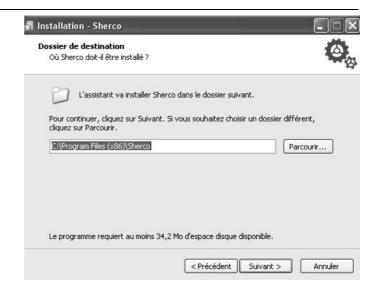
## 1.4- Instalación de la herramienta de diagnóstico


En caso de problema durante la instalación, se puede contactar EXXOTEST al +33 (0)4 50 02 34 34 o por correo a courrier@exxotest.com.

#### A-Instalación del programa y de los drivers :

- Abra el CD de instalación en su computadora.
- Run « Sherco\_Setup ».

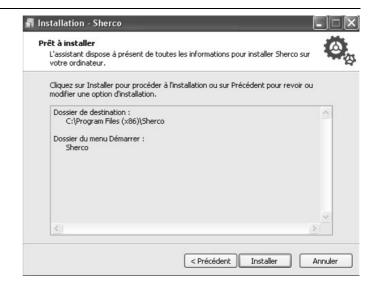
Exxodiag - Notice utilisateur - User guide
Sherco\_Setup


• Seleccione el idioma que desee.

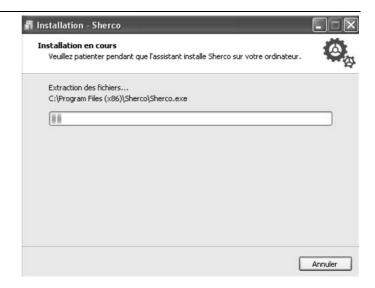



· Haga clic en « Siguiente».




 Choose Seleccione la carpeta donde desee instalar el programa.




Haga clic en « Siguiente».

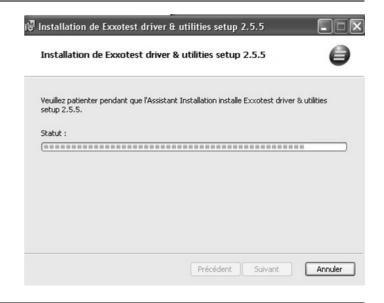


• Haga clic en « Instalar».



Instalando.




 Marque «Lanzar la instalación de los drivers» y «Finalizar».



 Se abre la siguiente ventana. Lea los términos del contrato de licencia. Marque «Acepto los términos del contrato de licencia» e «Instalar».



Instalando.



 Se abre la siguiente ventana. Haga clic en « Finalizar »

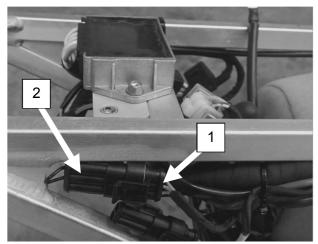


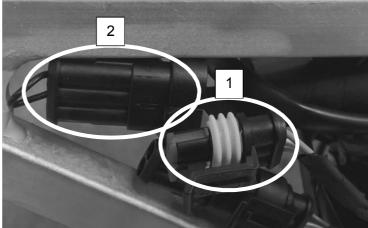
La instalación ha finalizado.

# B- Conecte el cable y su interfaz «MUXDIAG II» a un puerto USB de su computadora. Conecte el cable al conector de diagnóstico de la moto.

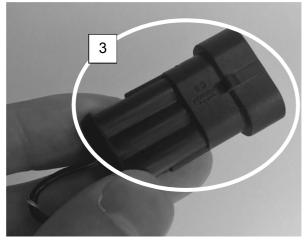
Verifique que la toma « MUXDIAG II » esté correctamente alimentada con la ayuda de los LED :

- Azul fijo : la PC está correctamente conectada.
- Azul intermitente : comunicándose con la PC.
- Azul apagado : la PC no está conectada, periférico desactivado o en espera, también puede indicar un problema con el USB.
- Verde fijo : problema en el programa iniciado.
- Verde intermitente (lento) : el programa iniciado se ejecuta correctamente.
- Verde intermitente (rápido) : comunicándose con la PC.
- Verde apagado: no se ha iniciado ningún programa.
- Rojo fijo : la tarjeta se alimenta correctamente.
- Todos los LED apagados: toma sin alimentación, desactivada o en espera USB.


## ) | 2- Presentación del programa


## 2.1- Conexión con el sistema Keyless

Sherco ha equipado sus motocicletas con un sistema « Keyless » que permite el uso sin llave y que apaga la moto después de 30 segundos de inactividad.


Este último punto no permite hacer el diagnóstico, es por eso que sea importante seguir los siguientes pasos.

1. Remove Desconectar el enchufe (1) del conector (2) (Situado en el soporte sillín – en la parte derecha de la moto).



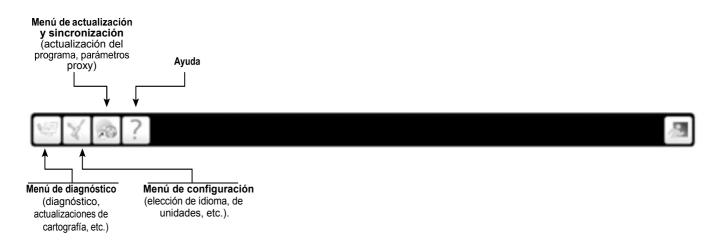


2. Tomar la derivación (3) (referencia 6267) y conectar el enchufe (1) a ella.





3. Ahora puede hacer el diagnóstico como se explica después.


**Información :** para establecer la conexión con la moto, esta debe estar bajo tensión (On). Para navegar por los diferentes menús, solo el cable USB con la toma «MUXDIAG II» debe estar conectado a la computadora.

Arrancar el programa con la ayuda del ícono



Usted debe acceder al menú siguiente :





## 2.2- Parámetros del programa : menú de configuración







En este menú, podrá modificar :

• La toma de diagnóstico. Podrá actualizar la lista de las tomas pulsando el botón. El Nº debe corresponder al Nº de la toma «MUXDIAG II».

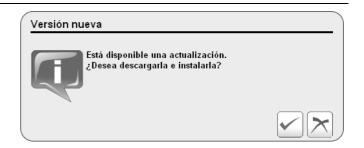


• El idioma de uso del programa : francés, inglés, español, portugués, alemán, italiano (es posible que el CD de instalación no contenga todos los idiomas). Actualizar el programa -> página 52).

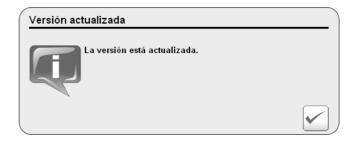
- La elección de unidades.
- Haga clic para volver a la pantalla principal.
- Haga clic para validar los cambios.

## 2.3- Menú de actualización y sincronización

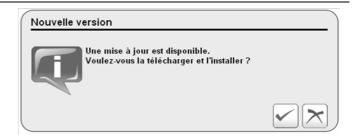




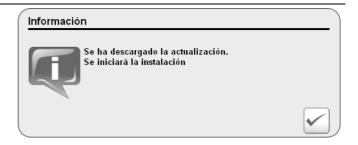

## A- En este menú, podrá actualizar el programa de la herramienta de diagnóstico :


• To Para saber si una actualización está disponible, verifique si cuenta con una conexión a Internet, luego haga clic en el siguiente icono




• Si hay una actualización disponible, aparecerá la siguiente ventana:




• Si no hay ninguna actualización disponible, aparecerá el siguiente mensaje :



Haga clic en para iniciar la descarga de la actualización.



- Aparece el siguiente mensaje:
- Haga clic en para iniciar la instalación.



• Retome las etapas de la instalación -> página 46. No es necesario volver a empezar la instalación de los drivers.

### B- Configuración de los parámetros de acceso a Internet

Posiblemente tendrá que configurar un servidor Proxy para acceder a Internet.

Haga clic en



• Fill Introduzca los siguientes parámetros si fuese necesario.



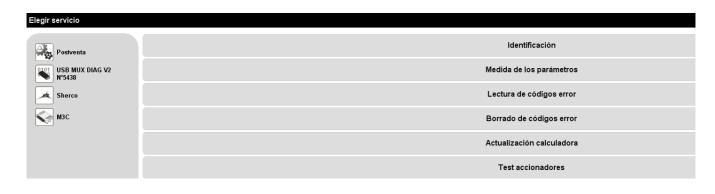
Haga clic en grabe los cambios.

## ) | 3- Uso del programa

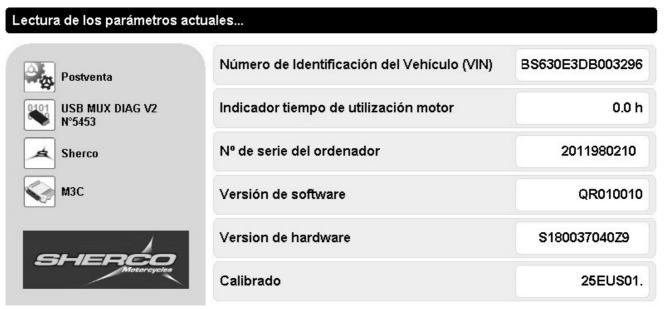
Menú de diagnóstico y de actualización de la cartografía de inyección



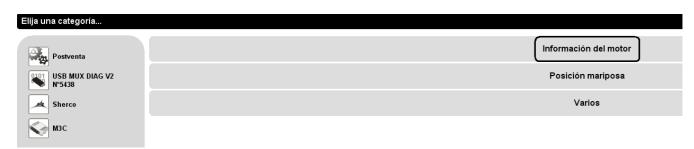
#### General:


Haga clic en « Sherco ».



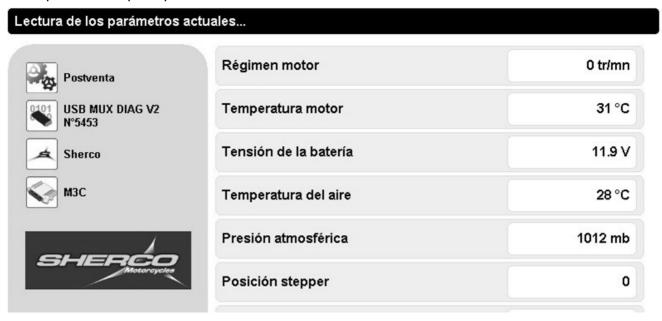

Haga clic en « M3C».




Se abre el siguiente menú:



**3.1-** Identificación: verificación de la identificación (N° de serie, horas de funcionamiento de los vehículos, N° de calibración).




3.2- Medición de los parámetros : parámetros generales (velocidad, presión, motor paso a paso, etc.).



#### A- Informaciones del motor:

Aparecen los principales valores del sistema :



#### Precisiones:

• Posición del motor paso a paso : valor de apertura de la válvula de aire (paso a paso) -> 35 < 50 < 75. Valor muy bajo : fuga por las válvulas/toma de aire del motor, por ejemplo. Valor muy alto : mariposa del cuerpo de inyección atascada, por ejemplo.

 $\underline{Informaci\'on:} valor correcto de la v\'alvula de aire: motor a 80 \, ^{\circ}C \, tras \, 15 \, mm \, de funcionamiento \, y \, 2 \, mm \, de ralent\'i.$ 

- Posición de la mariposa : valor del motor apagado : 0%. Apertura máxima : 100%. Si el valor no está al 0 % con el motor apagado, esto significa que la adaptación no se ha realizado. Haga una reinicialización del sistema varias veces (Corte el contacto. Espere que el relé del medidor haga un chasquido. Ponga en On la moto). El paso es de 0.5 %.
- Estado del botón Stop: estado del botón de apagado de emergencia. 0 : desactivado, 1: activado.
- Estado del motor: ES (motor listo para arrancar), ST (motor en arranque), IS (régimen de ralentí), PL (aceleración), PU (desaceleración), PUC (corte de inyección en desaceleración).

#### B- En las ventanas aparecerán otros valores :

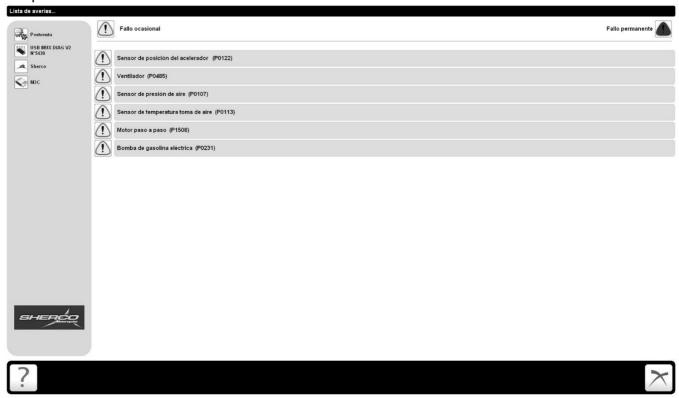
#### Posición de la mariposa :

Valor de adaptación para la posición mínima de la mariposa (en V): 0.45 < 0.5 (valor nominal) < 0.55.</li>

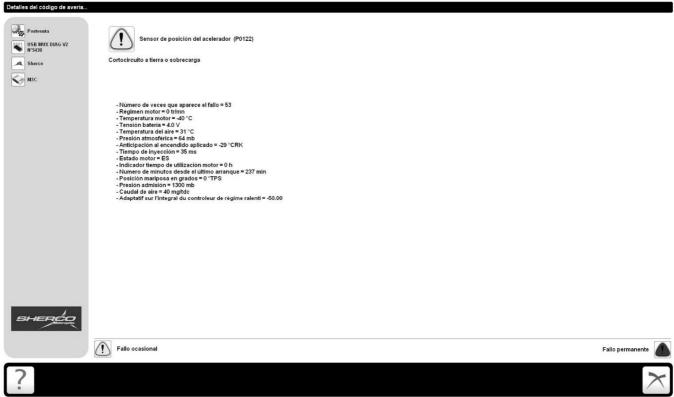
#### Varios:

- Presión de admisión (mb): presión a la altura del cuerpo de inyección leída por el sensor TMAP.
- Estado de sincronización del motor: reconocimiento del ciclo del motor.
  - 0: motor sin fase.
  - 1: motor que gira en fase.
- Adaptable a la integridad del actuador del régimen de ralentí (%): función no activada.

## 3.3- Lectura de los códigos de fallas :


Al hacer clic en «Lectura de códigos de fallas», el sistema inicia la verificación.




• Si no aparece ninguna falla, salga del menú con el icono.

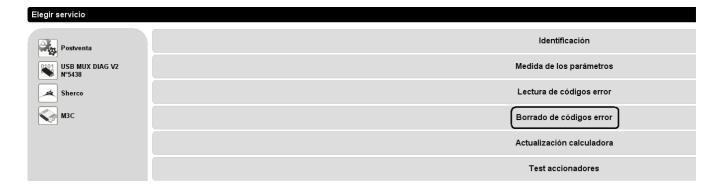


#### Si aparecen fallas:



Puede acceder al detalle de la falla haciendo clic en la falla que se muestra :




• Anote las fallas y salga del menú con el icono





#### Información:

- 1- Transient Falla fugitiva/falla permanente: una falla fugitiva se vuelve permanente tras un número variable de ciclos de motor según los componentes (inyector, bomba de gasolina, etc.). Para que una avería permanente desaparezca, hay que esperar 40 ciclos del motor sin que esa falla aparezca.
- 2- Falla ventilador: si la moto no tiene un ventilador instalado, la falla de ventilador aparecerá siempre (P0485).
- 3.4- Lectura de los códigos de fallas :
- A Si aparecen fallas, diríjase al menú «Borrado de códigos de fallas».

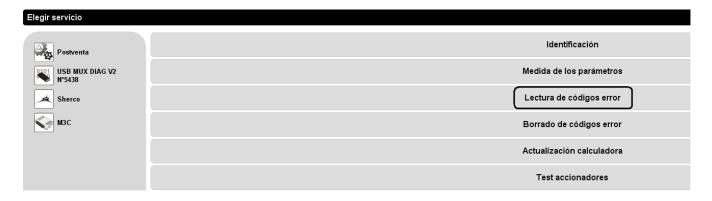




Borrar los códigos defectuosos?

• Acepte el borrado de códigos con el icono

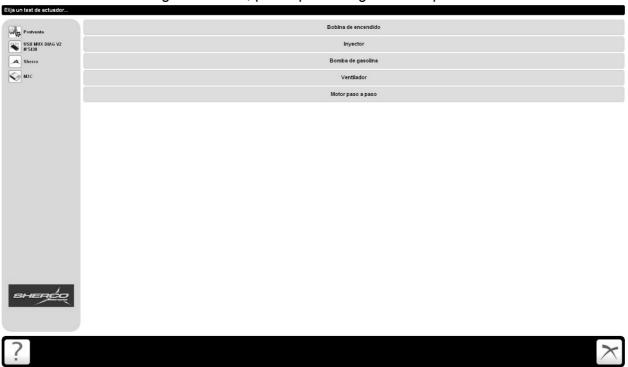



#### Aparece la siguiente pestaña:



Acepte presionando el icono




## B – Regrese al menú «Lectura de códigos de fallas»:



• Verifique que las fallas detectadas sean idénticas. Verifique/cambie las piezas defectuosas. Verifique las conexiones.

### 3.5- Prueba de los accionadores

Además de leer los códigos de fallas, podrá probar algunos componentes del sistema :



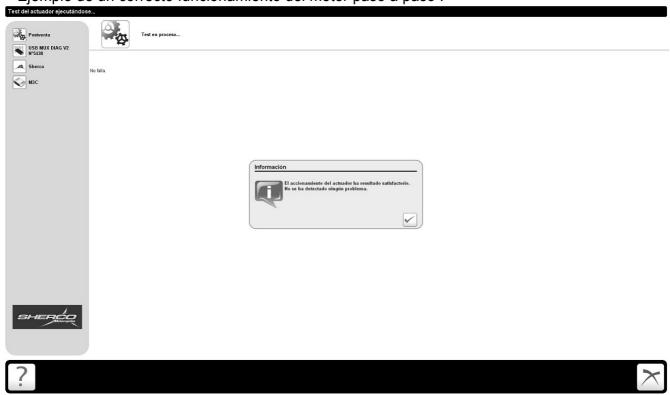
#### A - Bobina de encendido

Al iniciar el test de la bobina de encendido, aparece el siguiente mensaje :

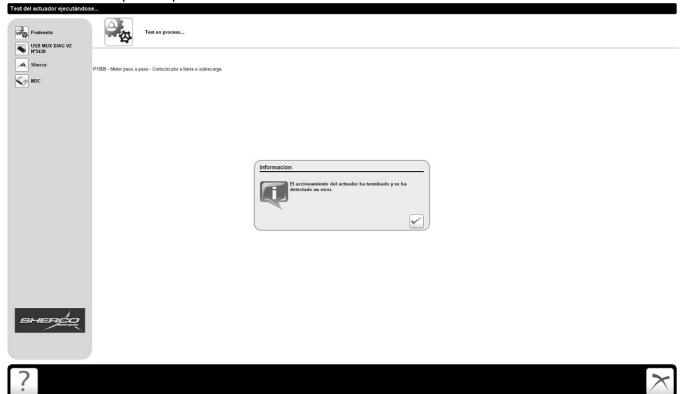


El sistema no puede detectar una falla en la bobina con motor apagado. Ya sea una bobina defectuosa o no, el resultado de la prueba será idéntico. Por lo tanto, durante la prueba, hay que verificar que la bobina emita el sonido que garantiza el correcto funcionamiento.




## **B** - Inyector

El mismo tipo de prueba que para la bobina. Durante la activación, hay que verificar que el inyector emita un chasquido.


### C - Bomba de gasolina/Ventilador/Motor paso a paso

Para la bomba de gasolina, el ventilador y el motor paso a paso (válvula de aire), la prueba es «estándar» y la detección de la falla o del correcto funcionamiento se hace como siempre.

Ejemplo de un correcto funcionamiento del motor paso a paso :



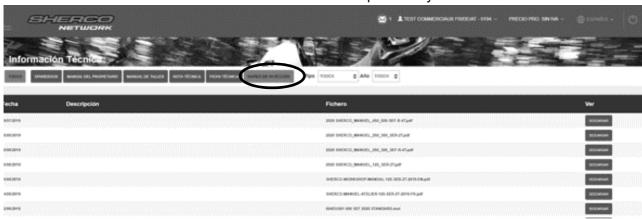
Falla del motor paso a paso :



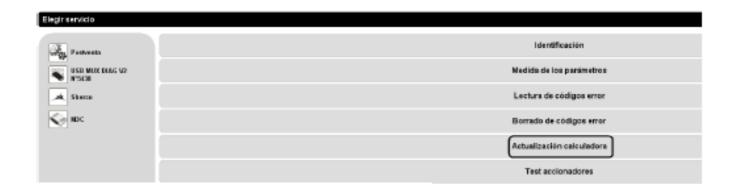
En caso de detección de una falla, verifique las piezas defectuosas y cámbielas en caso de ser necesario. **Información :** la prueba de ventilador solo tiene sentido si la moto tiene un ventilador instalado.

## 3.6- Actualización del medidor

Con la herramienta de diagnóstico, pueden hacerse actualizaciones de la cartografía de inyección(calibración). Para un silenciador Racing, por ejemplo, o porque la fábrica propone hacer una actualización. Estos archivos se encuentran disponibles en sherconetwork.


Preste atención al año de fabricación, la cilindrada, el tipo de silenciador, etc.

En caso de duda, contacte al soporte técnico.


1 - Descargue la actualización deseada (archivo.

Palabra).

#### Sherconetwork→Informacion→Informacion Técnica→Mapeo de inyección



- 2- Poner el contacto en la moto.
- 3 Seleccionar actualizar calculadora.



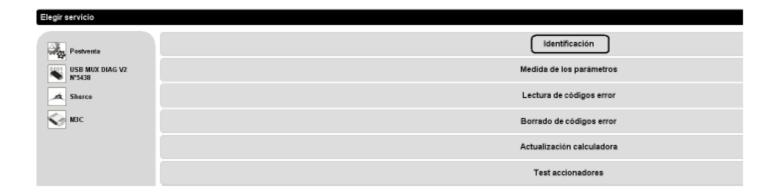
Validar con el ícono

Seleccione el archivo de calibración (.mot) descargado previamente

4- Descargar el fichero en la moto

#### ¡ATENCIÓN!

NO APAGUE LA MOTOCICLETA DURANTE LA OPERACIÓN DE DESCARGA (FLASH)
NO CORTE SOFTWARE DURANTE EL FLASH.
RIESGO DE DAÑO IRREMEDIABLE del CALCULADOR


5 - Al final de la descarga, se inicia el relé del temporizador y aparece el siguiente mensaje:

INFORMACION : la descarga fue exitosa

Validar con el ícono

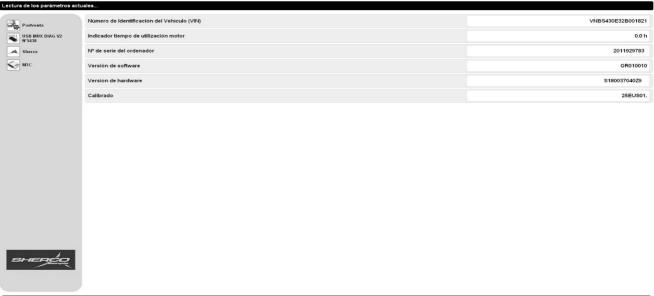


6-Compruebe la asignación correcta del archivo de calibración seleccionando "Identificación".



Verifique que el nombre del archivo coincida con el archivo descargado.




Info: la información del número de serie y las horas de funcionamiento no se restablece durante una actualización de calibración.

- 6-Coloca el "shunt" en el conector de la caja de aire para volver al modo « Keyless ».
- 7- El procedimiento de espera de la ECU lo inicia durante 20 s.
- 8- Espere 30 segundos para que la ECU se apague antes de arrancar la bicicleta.
- 9- Arranque la bicicleta, apáguela y espere otros 30 segundos antes del próximo inicio.
- 10- Arranque la bicicleta y verifique que los parámetros del motor sean normales (ralenti, motor paso a paso, etc.)

### 3.7- Función de impresión de pantalla

Si se comunicara con el soporte técnico y quisiera identificar rápidamente posibles problemas, podrá adjuntar a su mensaje archivos de captura de pantalla con la tecla F10 del teclado.

La pestaña «Identificación» es muy importante si desea comunicarse correctamente (Nº de serie de la moto, horas de motor, calibración, etc.)







# **WWW.SHERCO.COM**































